import time from builtins import print import sys import os import torch import argparse import json import pytorch_lightning as pl from transformers import MT5Config, MT5Tokenizer from pytorch_lightning import Trainer, loggers from transformers import MT5ForConditionalGeneration from pytorch_lightning.callbacks import LearningRateMonitor # os.environ["CUDA_VISIBLE_DEVICES"] = '3' class MT5PretrainModel(pl.LightningModule): @staticmethod def add_model_specific_args(parent_args): parser = parent_args.add_argument_group('BaseModel') parser.add_argument('--keep_tokens_path', default=None, type=str) return parent_args def __init__(self, args): super().__init__() self.save_hyperparameters(args) if args.tokenizer_type == 't5_tokenizer': if args.new_vocab_path is not None: # 用于从mt5继续训练,此时只保留中英文词表,spm采用新模型 assert args.keep_tokens_path is not None keep_tokens = json.load(open(args.keep_tokens_path)) self.model = MT5ForConditionalGeneration.from_pretrained( args.pretrained_model_path) new_config = self.model.config new_config.vocab_size = len(keep_tokens) print('vocab_size:', new_config.vocab_size) new_state_dict = self.model.state_dict() select_index = torch.tensor(keep_tokens) new_state_dict['encoder.embed_tokens.weight'] = torch.index_select( new_state_dict['encoder.embed_tokens.weight'], dim=0, index=select_index) new_state_dict['shared.weight'] = torch.index_select( new_state_dict['shared.weight'], dim=0, index=select_index) new_state_dict['decoder.embed_tokens.weight'] = torch.index_select( new_state_dict['decoder.embed_tokens.weight'], dim=0, index=select_index) new_state_dict['lm_head.weight'] = torch.index_select( new_state_dict['lm_head.weight'], dim=0, index=select_index) self.model = MT5ForConditionalGeneration.from_pretrained( args.pretrained_model_path, config=new_config, state_dict=new_state_dict) # self.model = MT5ForConditionalGeneration(config=new_config) else: # 用于继续训练 self.model = MT5ForConditionalGeneration.from_pretrained( args.pretrained_model_path ) else: self.model = MT5ForConditionalGeneration( MT5Config.from_pretrained(args.pretrained_model_path) ) def setup(self, stage) -> None: if stage == 'fit': train_loader = self.trainer._data_connector._train_dataloader_source.dataloader() # Calculate total steps if self.trainer.max_epochs > 0: world_size = self.trainer.world_size tb_size = self.hparams.train_batchsize * max(1, world_size) ab_size = self.trainer.accumulate_grad_batches * float(self.trainer.max_epochs) self.total_steps = (len(train_loader.dataset) * self.trainer.max_epochs // tb_size) // ab_size else: self.total_steps = self.trainer.max_steps // self.trainer.accumulate_grad_batches print('Total steps: {}' .format(self.total_steps)) def configure_optimizers(self): from fengshen.models.model_utils import configure_optimizers return configure_optimizers(self) def training_step(self, batch, batch_idx): output = self.model( input_ids=batch['input_ids'], labels=batch['labels']) acc = self.comput_metrix(output.logits, batch['labels']) self.log('train_loss', output.loss, sync_dist=True) self.log('train_acc', acc, sync_dist=True) return output.loss def validation_step(self, batch, batch_idx): # print('is out of index: ', batch['input_ids'][batch['input_ids'] >= 32598]) output = self.model( input_ids=batch['input_ids'], labels=batch['labels']) acc = self.comput_metrix(output.logits, batch['labels']) self.log('val_loss', output.loss, sync_dist=True) self.log('val_acc', acc, sync_dist=True) def comput_metrix(self, logits, labels): y_pred = torch.argmax(logits, dim=-1) y_pred = y_pred.view(size=(-1,)) y_true = labels.view(size=(-1,)).float() corr = torch.eq(y_pred, y_true) acc = torch.sum(corr.float())/y_true.shape[0] return acc def on_save_checkpoint(self, checkpoint) -> None: # Save the current loop info in the mid of epoch # if you lightning <= 1.6.0 uncomment the line below # checkpoint['loops'] = self.trainer.checkpoint_connector._get_loops_state_dict() if self.trainer.global_rank == 0 and self.trainer.global_step % self.hparams.every_n_train_steps == 0: self.model.save_pretrained(os.path.join( self.trainer.checkpoint_callback.dirpath, 'hf_pretrained_epoch{}_step{}'.format(self.trainer.current_epoch, self.trainer.global_step))) def on_load_checkpoint(self, checkpoint) -> None: global_step_offset = checkpoint["global_step"] if 'global_samples' in checkpoint: self.consumed_samples = checkpoint['global_samples'] self.trainer.fit_loop.epoch_loop._batches_that_stepped = global_step_offset def get_time_str(): return time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) def main(): total_parser = argparse.ArgumentParser("Pretrain Unsupervise.") total_parser.add_argument( '--do_eval_only', action='store_true', default=False) total_parser.add_argument( '--pretrained_model_path', default=None, type=str) total_parser.add_argument( '--new_vocab_path', default=None, type=str) total_parser.add_argument('--max_seq_length', default=1024, type=int) total_parser.add_argument('--ckpt_path', default=None, type=str) sys.path.append('../../../') from fengshen.data.t5_dataloader.t5_datasets import UnsuperviseT5DataModel from fengshen.utils.universal_checkpoint import UniversalCheckpoint # * Args for data preprocessing total_parser = UnsuperviseT5DataModel.add_data_specific_args(total_parser) # * Args for training total_parser = Trainer.add_argparse_args(total_parser) total_parser = UniversalCheckpoint.add_argparse_args(total_parser) total_parser = MT5PretrainModel.add_model_specific_args(total_parser) # * Args for base model args = total_parser.parse_args() print('Argument parse success.') print('UnsuperviseT5DataModel load start {}'.format(get_time_str())) data_model = UnsuperviseT5DataModel(args) print('UnsuperviseT5DataModel load end {}'.format(get_time_str())) if not args.do_eval_only: model = MT5PretrainModel(args) checkpoint_callback = UniversalCheckpoint(args) lr_monitor = LearningRateMonitor(logging_interval='step') logger = loggers.TensorBoardLogger(save_dir=os.path.join( args.default_root_dir, 'logs/')) trainer = Trainer.from_argparse_args(args, logger=logger, callbacks=[checkpoint_callback, lr_monitor] ) trainer.fit(model, data_model, ckpt_path=args.ckpt_path) else: tokenizer = MT5Tokenizer.from_pretrained(args.new_vocab_path, extra_ids=0) model = MT5PretrainModel(args=args, num_data=len(data_model.predict_dataloader())) trainer = Trainer.from_argparse_args(args) result = trainer.predict(model, data_model) result = result[0] for i in range(4): print(tokenizer.batch_decode(result['input_ids'][i])) print(tokenizer.batch_decode(result['predict_ids'][i])) print(tokenizer.batch_decode(result['labels'][i])) if __name__ == '__main__': main()