#!/bin/bash #SBATCH --job-name=randeng_t5_77M #SBATCH --nodes=1 #SBATCH --ntasks-per-node=8 #SBATCH --gres=gpu:8 # number of gpus #SBATCH --cpus-per-task=30 # cpu-cores per task (>1 if multi-threaded tasks) #SBATCH -o %x-%j.log #SBATCH -e %x-%j.err set -x -e echo "START TIME: $(date)" MICRO_BATCH_SIZE=64 ROOT_DIR=/cognitive_comp/ganruyi/experiments/randeng_t5_77M/ ZERO_STAGE=1 config_json="$ROOT_DIR/ds_config.t5_cn_small_pretrain.$SLURM_JOBID.json" export MASTER_PORT=$[RANDOM%10000+30000] cat < $config_json { "train_micro_batch_size_per_gpu": ${MICRO_BATCH_SIZE}, "steps_per_print": 100, "gradient_clipping": 1.0, "zero_optimization": { "stage": $ZERO_STAGE, "contiguous_gradients": false, "overlap_comm": true, "reduce_scatter": true, "reduce_bucket_size": 50000000, "allgather_bucket_size": 500000000 }, "optimizer": { "type": "Adam", "params": { "lr": 1e-4, "weight_decay": 1e-2 } }, "scheduler": { "params": { "warmup_max_lr": 1e-04, "warmup_min_lr": 1e-05, "total_num_steps": 100000, "warmup_num_steps" : 10000 }, "type": "WarmupDecayLR" }, "zero_allow_untested_optimizer": false, "fp16": { "enabled": true, "loss_scale": 0, "loss_scale_window": 1000, "hysteresis": 2, "min_loss_scale": 1 }, "activation_checkpointing": { "partition_activations": false, "contiguous_memory_optimization": false }, "wall_clock_breakdown": false } EOT export PL_DEEPSPEED_CONFIG_PATH=$config_json export TORCH_EXTENSIONS_DIR=/cognitive_comp/ganruyi/tmp/torch_extendsions # strategy=ddp strategy=deepspeed_stage_1 TRAINER_ARGS=" --max_epochs 1 \ --gpus 8 \ --num_nodes 1 \ --strategy ${strategy} \ --default_root_dir $ROOT_DIR \ --dirpath $ROOT_DIR/ckpt \ --save_top_k 3 \ --every_n_train_steps 50000 \ --monitor train_loss \ --mode min \ --save_last \ --val_check_interval 0.01 \ --preprocessing_num_workers 20 \ " # --accumulate_grad_batches 8 \ DATA_DIR=wudao_180g_t5_tokenized_512 DATA_ARGS=" --train_batchsize $MICRO_BATCH_SIZE \ --valid_batchsize $MICRO_BATCH_SIZE \ --train_data ${DATA_DIR} \ --train_split_size 0.999 \ --max_seq_length 512 \ " MODEL_ARGS=" --pretrained_model_path /cognitive_comp/ganruyi/hf_models/google/mt5-small \ --new_vocab_path /cognitive_comp/ganruyi/hf_models/t5_cn_small/sentencepiece_cn.model \ --keep_tokens_path /cognitive_comp/ganruyi/hf_models/t5_cn_small/sentencepiece_cn_keep_tokens.json \ " SCRIPTS_PATH=/cognitive_comp/ganruyi/Fengshenbang-LM/fengshen/examples/pretrain_t5/pretrain_t5.py export CMD=" \ $SCRIPTS_PATH \ $TRAINER_ARGS \ $MODEL_ARGS \ $DATA_ARGS \ " echo $CMD # source activate base # python $CMD # srun --nodes=1 --gres=gpu:8 --ntasks-per-node=8 --cpus-per-task=30 --jobid=171866 -e %x-%j.err -o %x-%j.log python $CMD SINGULARITY_PATH=/cognitive_comp/ganruyi/pytorch21_06_py3_docker_image_v2.sif srun --jobid=171866 --job-name=randeng_t5_77M --nodes=1 --gres=gpu:8 --ntasks-per-node=8 --cpus-per-task=30 -e %x-%j.err -o %x-%j.log singularity exec --nv -B /cognitive_comp/:/cognitive_comp/ $SINGULARITY_PATH bash -c '/home/ganruyi/anaconda3/bin/python $CMD' # to debug - add echo (it exits and prints what it would have launched) #run_cmd="$PY_LAUNCHER $CMD" # salloc --nodes=1 --gres=gpu:2 --cpus-per-gpu=20 -t 24:00:00 # clear; srun singularity exec --nv -B /cognitive_comp/:/cognitive_comp/ $SINGULARITY_PATH bash -c '/home/ganruyi/anaconda3/bin/python $CMD' # clear; srun singularity exec --nv -B /cognitive_comp/:/cognitive_comp/ $SINGULARITY_PATH bash -c '/home/ganruyi/anaconda3/bin/python -u -m debugpy --listen 192.168.190.2:53005 --wait-for-client $CMD'