#!/bin/bash #SBATCH --job-name=pretrain_bart # create a short name for your job #SBATCH --nodes=1 # node count #SBATCH --ntasks-per-node=8 # number of tasks to run per node #SBATCH --cpus-per-task=30 # cpu-cores per task (>1 if multi-threaded tasks) #SBATCH --gres=gpu:8 # number of gpus per node #SBATCH -o %x-%j.log # output and error log file names (%x for job id) #SBATCH -x dgx050 MODEL_NAME=bert-1.3B config_json="./$MODEL_NAME.ds_config.json" ((MASTER_PORT=$RANDOM%10000+40000)) echo $MASTER_PORT ZERO_STAGE=2 MICRO_BATCH_SIZE=16 # Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size() cat < $config_json { "zero_optimization": { "stage": $ZERO_STAGE, "contiguous_gradients": true, "overlap_comm": true, "reduce_scatter": true, "reduce_bucket_size": 2e8, "allgather_bucket_size": 2e8 }, "fp16": { "enabled": true, "loss_scale": 0, "loss_scale_window": 1000, "initial_scale_power": 16, "hysteresis": 2, "min_loss_scale": 1 }, "optimizer": { "params": { "betas": [ 0.9, 0.999 ], "eps": 1e-08, "lr": 1e-04, "weight_decay": 0.01 }, "type": "Adam" }, "scheduler": { "params": { "warmup_max_lr": 1e-04, "warmup_min_lr": 1e-05, "total_num_steps": 536877, "warmup_num_steps" : 50000 }, "type": "WarmupDecayLR" }, "steps_per_print": 100, "gradient_clipping": 1, "train_micro_batch_size_per_gpu": $MICRO_BATCH_SIZE, "zero_allow_untested_optimizer": false } EOT export PL_DEEPSPEED_CONFIG_PATH=$config_json export TORCH_EXTENSIONS_DIR=/home/wuziwei/torch_extendsions DATA_ARGS="\ --datasets_name wudao_180g \ --num_workers 16 \ --train_batchsize $MICRO_BATCH_SIZE " MODEL_ARGS="\ --model_path /data0/wuziwei/codes/Fengshenbang-LM/fengshen/examples/pretrain_bert/wudao180g_bert_base \ --learning_rate 1e-5 \ --weight_decay 0.01 \ --warmup 0.001 \ " MODEL_CHECKPOINT_ARGS="\ --monitor train_loss \ --save_top_k 3 \ --mode min \ --save_last \ --every_n_train_steps 5000 \ --dirpath /data0/wuziwei/codes/Fengshenbang-LM/fengshen/examples/pretrain_bert/$MODEL_NAME \ --filename model-{step:02d}-{train_loss:.4f} \ " TRAINER_ARGS="\ --gradient_clip_val 1.0 \ --max_epochs 1 \ --gpus 2 \ --num_nodes 1 \ --strategy ddp \ --log_every_n_steps 100 \ --val_check_interval 0.1 \ --check_val_every_n_epoch 1 \ --accumulate_grad_batches 1 \ --resume_from_checkpoint /data0/wuziwei/codes/Fengshenbang-LM/fengshen/examples/pretrain_bert/$MODEL_NAME/last.ckpt \ --default_root_dir /data0/wuziwei/codes/Fengshenbang-LM/fengshen/examples/pretrain_bert/$MODEL_NAME \ " export options=" \ $DATA_ARGS \ $MODEL_ARGS \ $MODEL_CHECKPOINT_ARGS \ $TRAINER_ARGS \ " export SCRIPT_PATH=/data0/wuziwei/codes/Fengshenbang-LM/fengshen/examples/pretrain_bert/pretrain_bert.py bash -c 'python3 $SCRIPT_PATH $options'