#!/bin/bash #SBATCH --job-name=medical_qa_finetune #SBATCH --nodes=2 #SBATCH --ntasks-per-node=8 #SBATCH --gres=gpu:8 # number of gpus #SBATCH -o /cognitive_comp/wuziwei/task/fs_medical_qa_finetune/%x-%j.log #SBATCH -e /cognitive_comp/wuziwei/task/fs_medical_qa_finetune/%x-%j.err #SBATCH -x dgx[050,049] #export NCCL_DEBUG=INFO # export PATH=$PATH:/cognitive_comp/wuziwei/codes/fengshen/fengshen set -x -e echo "START TIME: $(date)" MICRO_BATCH_SIZE=1 ROOT_DIR=/cognitive_comp/wuziwei/task/fs_medical_qa_finetune ZERO_STAGE=2 config_json="$ROOT_DIR/training_config.json" export MASTER_PORT=$[RANDOM%10000+30000] # Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size() cat < $config_json { "zero_optimization": { "stage": $ZERO_STAGE, "contiguous_gradients": true, "overlap_comm": true, "reduce_scatter": true, "reduce_bucket_size": 2e8, "allgather_bucket_size": 2e8 }, "optimizer": { "type": "Adam", "params": { "lr": 1e-5, "betas": [0.9,0.95], "eps": 1e-8, "weight_decay": 1e-2 } }, "scheduler": { "type": "WarmupLR", "params":{ "warmup_min_lr": 5e-6, "warmup_max_lr": 1e-5 } }, "fp16": { "enabled": true, "loss_scale": 0, "loss_scale_window": 1000, "initial_scale_power": 32, "hysteresis": 2, "min_loss_scale": 1 }, "activation_checkpointing": { "partition_activations": false, "contiguous_memory_optimization": false }, "wall_clock_breakdown": false, "zero_allow_untested_optimizer": false, "train_micro_batch_size_per_gpu": 1, "steps_per_print": 100, "gradient_clipping": 1.0 } EOT # export PL_DEEPSPEED_CONFIG_PATH=$config_json export PL_DEEPSPEED_CONFIG_PATH=$config_json export TORCH_EXTENSIONS_DIR=/cognitive_comp/wuziwei/torch_extendsions TRAINER_ARGS=" --max_epochs 10 \ --gpus 16 \ --num_nodes 2 \ --strategy deepspeed_stage_2 \ --default_root_dir $ROOT_DIR \ --dirpath $ROOT_DIR/ckpt \ --save_top_k 3 \ --monitor train_loss \ --mode min \ --save_last \ " DATA_DIR=/cognitive_comp/wuziwei/task-data/medical_qa DATA_ARGS=" --data_dir $DATA_DIR \ --train_batchsize $MICRO_BATCH_SIZE \ --valid_batchsize $MICRO_BATCH_SIZE \ --train_data train.txt \ --valid_data valid.txt \ --test_data test.txt " # PRETRAINED_MODEL_PATH=/cognitive_comp/wuziwei/pretrained_model_hf/gpt2 PRETRAINED_MODEL_PATH=/cognitive_comp/wuziwei/pretrained_model_hf/medical_v2 MODEL_ARGS=" --pretrained_model_path ${PRETRAINED_MODEL_PATH} \ --output_save_path $ROOT_DIR/predict.json \ --learning_rate 1e-4 \ --weight_decay 0.1 \ --warmup 0.01 \ " SCRIPTS_PATH=/cognitive_comp/wuziwei/codes/fengshen/fengshen/examples/GPT_pretrain_finetune/finetune_medicalQA.py export CMD=" \ $SCRIPTS_PATH \ $TRAINER_ARGS \ $MODEL_ARGS \ $DATA_ARGS \ " echo $CMD SINGULARITY_PATH=/cognitive_comp/wuziwei/container/oneflow-cuda11.sif # singularity exec --nv -B /cognitive_comp/wuziwei/:/cognitive_comp/wuziwei/ $SINGULARITY_PATH python $CMD # to debug - add echo (it exits and prints what it would have launched) #run_cmd="$PY_LAUNCHER $CMD" srun singularity exec --nv -B /cognitive_comp/wuziwei/:/cognitive_comp/wuziwei/ $SINGULARITY_PATH bash -c 'python $CMD'