|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""utils for ngram for ZEN model.""" |
|
|
|
import os |
|
import logging |
|
|
|
from transformers import cached_path |
|
|
|
NGRAM_DICT_NAME = 'ngram.txt' |
|
|
|
logger = logging.getLogger(__name__) |
|
PRETRAINED_VOCAB_ARCHIVE_MAP = {'IDEA-CCNL/Erlangshen-ZEN1-224M-Chinese': 'https://huggingface.co/IDEA-CCNL/Erlangshen-ZEN1-224M-Chinese/resolve/main/ngram.txt'} |
|
|
|
|
|
class ZenNgramDict(object): |
|
""" |
|
Dict class to store the ngram |
|
""" |
|
|
|
def __init__(self, ngram_freq_path, tokenizer, max_ngram_in_seq=128): |
|
"""Constructs ZenNgramDict |
|
|
|
:param ngram_freq_path: ngrams with frequency |
|
""" |
|
if os.path.isdir(ngram_freq_path): |
|
ngram_freq_path = os.path.join(ngram_freq_path, NGRAM_DICT_NAME) |
|
self.ngram_freq_path = ngram_freq_path |
|
self.max_ngram_in_seq = max_ngram_in_seq |
|
self.id_to_ngram_list = ["[pad]"] |
|
self.ngram_to_id_dict = {"[pad]": 0} |
|
self.ngram_to_freq_dict = {} |
|
|
|
logger.info("loading ngram frequency file {}".format(ngram_freq_path)) |
|
with open(ngram_freq_path, "r", encoding="utf-8") as fin: |
|
for i, line in enumerate(fin): |
|
ngram, freq = line.split(",") |
|
tokens = tuple(tokenizer.tokenize(ngram)) |
|
self.ngram_to_freq_dict[ngram] = freq |
|
self.id_to_ngram_list.append(tokens) |
|
self.ngram_to_id_dict[tokens] = i + 1 |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path, cache_dir=None, **kwargs): |
|
""" |
|
Instantiate a PreTrainedBertModel from a pre-trained model file. |
|
Download and cache the pre-trained model file if needed. |
|
""" |
|
if pretrained_model_name_or_path in PRETRAINED_VOCAB_ARCHIVE_MAP: |
|
ngram_file = PRETRAINED_VOCAB_ARCHIVE_MAP[pretrained_model_name_or_path] |
|
if '-cased' in pretrained_model_name_or_path and kwargs.get('do_lower_case', True): |
|
logger.warning("The pre-trained model you are loading is a cased model but you have not set " |
|
"`do_lower_case` to False. We are setting `do_lower_case=False` for you but " |
|
"you may want to check this behavior.") |
|
kwargs['do_lower_case'] = False |
|
elif '-cased' not in pretrained_model_name_or_path and not kwargs.get('do_lower_case', True): |
|
logger.warning("The pre-trained model you are loading is an uncased model but you have set " |
|
"`do_lower_case` to False. We are setting `do_lower_case=True` for you " |
|
"but you may want to check this behavior.") |
|
kwargs['do_lower_case'] = True |
|
else: |
|
ngram_file = pretrained_model_name_or_path |
|
if os.path.isdir(ngram_file): |
|
ngram_file = os.path.join(ngram_file, NGRAM_DICT_NAME) |
|
|
|
try: |
|
resolved_ngram_file = cached_path(ngram_file, cache_dir=cache_dir) |
|
except EnvironmentError: |
|
if pretrained_model_name_or_path in PRETRAINED_VOCAB_ARCHIVE_MAP: |
|
logger.error( |
|
"Couldn't reach server at '{}' to download vocabulary.".format( |
|
ngram_file)) |
|
else: |
|
logger.error( |
|
"Model name '{}' was not found in model name list ({}). " |
|
"We assumed '{}' was a path or url but couldn't find any file " |
|
"associated to this path or url.".format( |
|
pretrained_model_name_or_path, |
|
', '.join(PRETRAINED_VOCAB_ARCHIVE_MAP.keys()), |
|
ngram_file)) |
|
return None |
|
if resolved_ngram_file == ngram_file: |
|
logger.info("loading vocabulary file {}".format(ngram_file)) |
|
else: |
|
logger.info("loading vocabulary file {} from cache at {}".format( |
|
ngram_file, resolved_ngram_file)) |
|
|
|
ngram_dict = cls(resolved_ngram_file, **kwargs) |
|
return ngram_dict |
|
|
|
def save(self, ngram_freq_path): |
|
with open(ngram_freq_path, "w", encoding="utf-8") as fout: |
|
for ngram, freq in self.ngram_to_freq_dict.items(): |
|
fout.write("{},{}\n".format(ngram, freq)) |
|
|