|
import torch |
|
import torch.nn.functional as F |
|
from fengshen.models.transfo_xl_paraphrase import TransfoXLModel |
|
from fengshen.utils import top_k_logits, get_masks_and_position_ids |
|
from transformers import T5Tokenizer |
|
|
|
|
|
def get_batch(context_tokens, mem_length, batch_size=1): |
|
tokens = context_tokens |
|
tokens = tokens.view(batch_size, -1).contiguous() |
|
|
|
attention_mask, position_ids = get_masks_and_position_ids(tokens, mem_length=mem_length) |
|
return tokens, attention_mask, position_ids |
|
|
|
|
|
def paraphrase_generate(model, |
|
tokenizer, |
|
input_text, |
|
device=0, |
|
mem_length=512, |
|
temperature=1., |
|
top_p=0.9, |
|
eod_token=50000): |
|
''' Generate with fixed prompt pretrained ''' |
|
prompt = f"“{input_text}”的相似句是“" |
|
counter = 0 |
|
prompt_tokens = tokenizer.encode(prompt)[:-1] |
|
tokens, attention_mask, position_ids = get_batch( |
|
torch.LongTensor(prompt_tokens), mem_length, batch_size=1) |
|
tokens, attention_mask, position_ids = tokens.cuda( |
|
device), attention_mask.cuda(device), position_ids.cuda(device) |
|
org_context_length = tokens.shape[-1] |
|
model = model.cuda(device) |
|
while counter < 100: |
|
if counter == 0: |
|
mems = [] |
|
output = model(input_ids=tokens, attention_mask=attention_mask, |
|
position_ids=position_ids, hidden_states=mems) |
|
logits, mems = output.logits, output.hidden_states |
|
else: |
|
index = org_context_length + counter |
|
output = model(input_ids=tokens[:, index - 1: index], position_ids=tokens.new_ones((1, 1)) * (index - 1), |
|
attention_mask=tokens.new_ones(1, 1, 1, mem_length + 1, device=device, |
|
dtype=torch.float), hidden_states=mems) |
|
logits, mems = output.logits, output.hidden_states |
|
logits = logits[:, -1] |
|
logits /= temperature |
|
logits = top_k_logits(logits, top_k=0, top_p=top_p) |
|
log_probs = F.softmax(logits, dim=-1) |
|
prev = torch.multinomial(log_probs, num_samples=1)[0] |
|
is_end = prev == eod_token |
|
if is_end: |
|
break |
|
tokens = torch.cat((tokens, prev.view(1, 1)), dim=1) |
|
counter += 1 |
|
out_tokens = tokens.view(-1).contiguous().tolist()[len(prompt_tokens):] |
|
res = tokenizer.decode(out_tokens).split('”')[0] |
|
return res |
|
|
|
|
|
if __name__ == "__main__": |
|
device = 0 |
|
tokenizer = T5Tokenizer.from_pretrained('IDEA-CCNL/Randeng-TransformerXL-1.1B-Paraphrasing-Chinese', |
|
eos_token='<|endoftext|>', |
|
extra_ids=0) |
|
model = TransfoXLModel.from_pretrained('IDEA-CCNL/Randeng-TransformerXL-1.1B-Paraphrasing-Chinese') |
|
input_text = "年轻教师选择农村学校,还是县城学校?" |
|
res = paraphrase_generate(model, tokenizer, input_text, device=device) |
|
print(res) |
|
|