summary / fengshen /models /transfo_xl_denoise /modeling_transfo_xl_denoise.py
fclong's picture
Upload 396 files
8ebda9e
# coding=utf-8
# Copyright 2022 IDEA-CCNL The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch TransfoXLDenoise model. """
import math
import torch
import torch.utils.checkpoint as checkpoint
import torch.nn.functional as F
from dataclasses import dataclass
from typing import Optional, Tuple
from transformers.modeling_utils import (
PreTrainedModel
)
from transformers.modeling_outputs import ModelOutput
from .configuration_transfo_xl_denoise import TransfoXLDenoiseConfig
_CHECKPOINT_FOR_DOC = "transformer-xl-1b-base"
_CONFIG_FOR_DOC = "TransfoXLDenoiseConfig"
_TOKENIZER_FOR_DOC = "TransfoXLDenoiseTokenizer"
Transfo_XL_Denoise_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general
usage and behavior.
Parameters:
config ([`~TransfoXLDenoiseConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the configuration.
Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
Transfo_XL_Denoise_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`TransfoXLDenoiseTokenizer`].
See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings.
Selected in the range `[0, config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert *input_ids* indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
Transfo_XL_Denoise_PRETRAINED_MODEL_ARCHIVE_LIST = [
"transformer-xl-1b-base",
]
@dataclass
class TransfoXLDenoiseModelOutput(ModelOutput):
logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
class PositionalEmbedding(torch.nn.Module):
def __init__(self, hidden_size):
super(PositionalEmbedding, self).__init__()
self.hidden_size = hidden_size
inv_freq = 1 / (10000 ** (torch.arange(0.0, hidden_size, 2.0) / hidden_size))
self.register_buffer('inv_freq', inv_freq)
def forward(self, pos_seq, bsz=None):
sinusoid_inp = torch.ger(pos_seq, self.inv_freq)
pos_emb = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=-1)
if bsz is not None:
return pos_emb[None, :, :].expand(bsz, -1, -1)
else:
return pos_emb[None, :, :]
def ensure_divisibility(numerator, denominator):
"""Ensure that numerator is divisible by the denominator."""
assert numerator % denominator == 0, '{} is not divisible by {}'.format(
numerator, denominator)
def divide(numerator, denominator):
"""Ensure that numerator is divisible by the denominator and return
the division value."""
ensure_divisibility(numerator, denominator)
return numerator // denominator
def scaled_init_method(sigma, num_layers):
"""Init method based on N(0, sigma/sqrt(2*num_layers)."""
std = sigma / math.sqrt(2.0 * num_layers)
def init_(tensor):
return torch.nn.init.normal_(tensor, mean=0.0, std=std)
return init_
def unscaled_init_method(sigma):
"""Init method based on N(0, sigma)."""
def init_(tensor):
return torch.nn.init.normal_(tensor, mean=0.0, std=sigma)
return init_
@torch.jit.script
def gelu_impl(x):
"""OpenAI's gelu implementation."""
return 0.5 * x * (1.0 + torch.tanh(0.7978845608028654 * x
* (1.0 + 0.044715 * x * x)))
def gelu(x):
return gelu_impl(x)
class GPT2SelfAttention(torch.nn.Module):
"""Parallel self-attention layer for GPT2.
Self-attention layer takes input with size [b, s, h] where b is
the batch size, s is the sequence lenght, and h is the hidden size
and creates output of the same size.
Arguments:
hidden_size: total hidden size of the layer (h).
num_attention_heads: number of attention heads (n). Note that we
require n to be divisible by number of GPUs
used to parallelize the model. Also, we
require hidden size to be divisible by n.
dropout_prob: dropout probability for the attention scores.
init_method: weight initialization.
output_layer_init_method: output layer initialization. If None, use
`init_method`.
We use the following notation:
h: hidden_size
n: num_attention_heads
p: number of partitions
np: n/p
hp: h/p
hn: h/n
b: batch size
s: sequence length
"""
def __init__(self, hidden_size, num_attention_heads,
attention_dropout_prob, output_dropout_prob,
init_method, output_layer_init_method=None, relative_encoding=False):
super(GPT2SelfAttention, self).__init__()
# Set output layer initialization if not provided.
if output_layer_init_method is None:
output_layer_init_method = init_method
# Per attention head and per partition values.
self.hidden_size_per_partition = hidden_size
self.hidden_size_per_attention_head = divide(hidden_size,
num_attention_heads)
self.num_attention_heads_per_partition = num_attention_heads
self.relative_encoding = relative_encoding
# Strided linear layer.
self.query_key_value = torch.nn.Linear(hidden_size,
3 * hidden_size, bias=True)
if relative_encoding:
self.relative = torch.nn.Linear(hidden_size, hidden_size, bias=True)
# Dropout. Note that for a single iteration, this layer will generate
# different outputs on different number of parallel partitions but
# on average it should not be partition dependent.
self.attention_dropout = torch.nn.Dropout(attention_dropout_prob)
# Output.
self.dense = torch.nn.Linear(hidden_size, hidden_size, bias=True)
self.output_dropout = torch.nn.Dropout(output_dropout_prob)
def _transpose_for_scores(self, tensor):
"""Transpose a 3D tensor [b, s, np*hn] into a 4D tensor with
size [b, np, s, hn].
"""
new_tensor_shape = tensor.size()[:-1] + \
(self.num_attention_heads_per_partition,
self.hidden_size_per_attention_head)
tensor = tensor.view(*new_tensor_shape)
return tensor.permute(0, 2, 1, 3)
@staticmethod
def _rel_shift(x, zero_triu=False):
# ql x kl x bsz x h
# bsz x h x ql x kl
zero_pad = torch.zeros((*x.size()[:-2], x.size(-2), 1),
device=x.device, dtype=x.dtype)
x_padded = torch.cat([zero_pad, x], dim=-1)
x_padded = x_padded.view(*x.size()[:-2], x.size(-1) + 1, x.size(-2))
x = x_padded[:, :, 1:].view_as(x)
if zero_triu:
ones = torch.ones((x.size(0), x.size(1)))
x = x * torch.tril(ones, x.size(1) - x.size(0))[:, :, None, None]
return x
@staticmethod
def _rel_shift_latest(x: torch.Tensor):
ndims = x.dim()
x_shape = x.size()
row_dim = 2
col_dim = row_dim + 1
assert col_dim < ndims
tgt_shape_1, tgt_shape_2 = [], []
for i in range(ndims):
if i == row_dim:
tgt_shape_1.append(x_shape[col_dim])
tgt_shape_2.append(x_shape[row_dim])
elif i == col_dim:
tgt_shape_1.append(x_shape[row_dim])
tgt_shape_2.append(x_shape[col_dim] - 1)
else:
tgt_shape_1.append(x_shape[i])
tgt_shape_2.append(x_shape[i])
x = x.view(*tgt_shape_1)
x = x[:, :, 1:, :]
x = x.view(*tgt_shape_2)
return x
def forward(self, hidden_states, ltor_mask, position_embeddings=None, r_w_bias=None, r_r_bias=None, mem=None):
# hidden_states: [b, s, h]
# ltor_mask: [1, 1, s, s]
# Attention heads. [b, s, hp]
query_length = hidden_states.size(1)
if mem is None:
mixed_x_layer = self.query_key_value(hidden_states)
(mixed_query_layer,
mixed_key_layer,
mixed_value_layer) = torch.chunk(mixed_x_layer, 3, dim=-1)
else:
cat = torch.cat((mem, hidden_states), 1)
mixed_x_layer = self.query_key_value(cat)
(mixed_query_layer,
mixed_key_layer,
mixed_value_layer) = torch.chunk(mixed_x_layer, 3, dim=-1)
mixed_query_layer = mixed_query_layer[:, -query_length:]
# Reshape and transpose [b, np, s, hn]
query_layer = self._transpose_for_scores(mixed_query_layer)
key_layer = self._transpose_for_scores(mixed_key_layer)
value_layer = self._transpose_for_scores(mixed_value_layer)
if self.relative_encoding:
relative_layer = self.relative(position_embeddings)
relative_layer = self._transpose_for_scores(
relative_layer) # 1 (bsz) x n_head x klen x d_head
# Raw attention scores. [b, np, qs, ks]
rw_head_q = query_layer + r_w_bias.unsqueeze(1)
ac_score = torch.matmul(rw_head_q, key_layer.transpose(-1, -2))
rr_head_q = query_layer + r_r_bias.unsqueeze(1)
bd_score = torch.matmul(rr_head_q, relative_layer.transpose(-1, -2))
bd_score = self._rel_shift(bd_score) # qlen x klen x bsz x n_head
# bd_score = bd_score.permute(2, 3, 0, 1) # bsz n_head qlen klen
attention_scores = ac_score + bd_score
else:
# Raw attention scores. [b, np, s, s]
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(
self.hidden_size_per_attention_head)
# Apply the left to right attention mask.
attention_scores = torch.mul(attention_scores, ltor_mask) - \
10000.0 * (1.0 - ltor_mask)
# Attention probabilities. [b, np, s, s]
attention_probs = torch.nn.Softmax(dim=-1)(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
# with get_cuda_rng_tracker().fork():
# attention_probs = self.attention_dropout(attention_probs)
# Context layer.
# [b, np, s, hn]
context_layer = torch.matmul(attention_probs, value_layer)
# [b, s, np, hn]
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + \
(self.hidden_size_per_partition,)
# [b, s, hp]
context_layer = context_layer.view(*new_context_layer_shape)
# Output. [b, s, h]
output = self.dense(context_layer)
output = self.output_dropout(output)
return output
class GPT2MLP(torch.nn.Module):
"""MLP for GPT2.
MLP will take the input with h hidden state, project it to 4*h
hidden dimension, perform gelu transformation, and project the
state back into h hidden dimension. At the end, dropout is also
applied.
Arguments:
hidden_size: The hidden size of the self attention.
output_dropout_prob: dropout probability for the outputs
after self attention and final output.
init_method: initialization method used for the weights. Note
that all biases are initialized to zero and
layernorm weight are initialized to one.
output_layer_init_method: output layer initialization. If None,
use `init_method`.
"""
def __init__(self, hidden_size, output_dropout_prob, init_method,
output_layer_init_method=None):
super(GPT2MLP, self).__init__()
# Set output layer initialization if not provided.
if output_layer_init_method is None:
output_layer_init_method = init_method
# Project to 4h.
self.dense_h_to_4h = torch.nn.Linear(hidden_size, 4 * hidden_size)
# Project back to h.
self.dense_4h_to_h = torch.nn.Linear(4 * hidden_size, hidden_size)
self.dropout = torch.nn.Dropout(output_dropout_prob)
def forward(self, hidden_states):
# [b, s, 4hp]
intermediate_parallel = self.dense_h_to_4h(hidden_states)
intermediate_parallel = gelu(intermediate_parallel)
# [b, s, h]
output = self.dense_4h_to_h(intermediate_parallel)
output = self.dropout(output)
return output
class GPT2TransformerLayer(torch.nn.Module):
"""A single layer transformer for GPT2.
We use the following notation:
h: hidden size
n: number of attention heads
b: batch size
s: sequence length
Transformore layer takes input with size [b, s, h] and returns an
output of the same size.
Arguments:
hidden_size: The hidden size of the self attention.
num_attention_heads: number of attention head in the self
attention.
attention_dropout_prob: dropout probability of the attention
score in self attention.
output_dropout_prob: dropout probability for the outputs
after self attention and final output.
layernorm_epsilon: epsilon used in layernorm to avoid
division by zero.
init_method: initialization method used for the weights. Note
that all biases are initialized to zero and
layernorm weight are initialized to one.
output_layer_init_method: output layers (attention output and
mlp output) initialization. If None,
use `init_method`.
"""
def __init__(self,
hidden_size,
num_attention_heads,
attention_dropout_prob,
output_dropout_prob,
layernorm_epsilon,
init_method,
output_layer_init_method=None,
relative_encoding=False):
super(GPT2TransformerLayer, self).__init__()
# Set output layer initialization if not provided.
if output_layer_init_method is None:
output_layer_init_method = init_method
# Layernorm on the input data.
self.input_layernorm = torch.nn.LayerNorm(hidden_size, eps=layernorm_epsilon)
# Self attention.
self.attention = GPT2SelfAttention(
hidden_size,
num_attention_heads,
attention_dropout_prob,
output_dropout_prob,
init_method,
output_layer_init_method=output_layer_init_method,
relative_encoding=relative_encoding)
# Layernorm on the input data.
self.post_attention_layernorm = torch.nn.LayerNorm(hidden_size,
eps=layernorm_epsilon)
# MLP
self.mlp = GPT2MLP(
hidden_size,
output_dropout_prob,
init_method,
output_layer_init_method=output_layer_init_method)
def forward(self, hidden_states, ltor_mask, position_embeddings=None, r_w_bias=None, r_r_bias=None, mem=None):
# hidden_states: [b, s, h]
# ltor_mask: [1, 1, s, s]
# Layer norm at the begining of the transformer layer.
layernorm_output = self.input_layernorm(hidden_states)
mem = self.input_layernorm(mem) if mem is not None else None
# Self attention.
attention_output = self.attention(
layernorm_output, ltor_mask, position_embeddings, r_w_bias, r_r_bias, mem)
# Residual connection.
# print(f'hz {hidden_states.shape}, attn {attention_output.shape}')
layernorm_input = hidden_states + attention_output
# Layer norm post the self attention.
layernorm_output = self.post_attention_layernorm(layernorm_input)
# MLP.
mlp_output = self.mlp(layernorm_output)
# Second residual connection.
output = layernorm_input + mlp_output
return output
class GPT2Transformer(torch.nn.Module):
"""GPT-2 transformer.
This module takes input from embedding layer and it's output can
be used directly by a logit layer. It consists of L (num-layers)
blocks of:
layer norm
self attention
residual connection
layer norm
mlp
residual connection
followed by a final layer norm.
Arguments:
num_layers: Number of transformer layers.
hidden_size: The hidden size of the self attention.
num_attention_heads: number of attention head in the self
attention.
attention_dropout_prob: dropout probability of the attention
score in self attention.
output_dropout_prob: dropout probability for the outputs
after self attention and final output.
checkpoint_activations: if True, checkpoint activations.
checkpoint_num_layers: number of layers to checkpoint. This
is basically the chunk size in checkpoitning.
layernorm_epsilon: epsilon used in layernorm to avoid
division by zero.
init_method_std: standard deviation of the init method which has
the form N(0, std).
use_scaled_init_for_output_weights: If Ture use 1/sqrt(2*num_layers)
scaling for the output weights (
output of self attention and mlp).
"""
def __init__(self,
num_layers,
hidden_size,
num_attention_heads,
max_sequence_length,
max_memory_length,
embedding_dropout_prob,
attention_dropout_prob,
output_dropout_prob,
checkpoint_activations,
checkpoint_num_layers=1,
layernorm_epsilon=1.0e-5,
init_method_std=0.02,
use_scaled_init_for_output_weights=True,
relative_encoding=False):
super(GPT2Transformer, self).__init__()
# Store activation checkpoiting flag.
self.checkpoint_activations = checkpoint_activations
self.checkpoint_num_layers = checkpoint_num_layers
self.max_memory_length = max_memory_length
output_layer_init_method = None
if use_scaled_init_for_output_weights:
output_layer_init_method = scaled_init_method(init_method_std,
num_layers)
# Embeddings dropout
self.embedding_dropout = torch.nn.Dropout(embedding_dropout_prob)
self.relative_encoding = relative_encoding
if relative_encoding:
# Relative position embedding
self.position_embeddings = PositionalEmbedding(hidden_size)
# Per attention head and per partition values.
self.hidden_size_per_attention_head = divide(hidden_size,
num_attention_heads)
self.num_attention_heads_per_partition = num_attention_heads
self.r_w_bias = torch.nn.Parameter(
torch.Tensor(self.num_attention_heads_per_partition, self.hidden_size_per_attention_head))
self.r_r_bias = torch.nn.Parameter(
torch.Tensor(self.num_attention_heads_per_partition, self.hidden_size_per_attention_head))
# Always initialize bias to zero.
with torch.no_grad():
self.r_w_bias.zero_()
self.r_r_bias.zero_()
else:
# Position embedding (serial).
self.position_embeddings = torch.nn.Embedding(max_sequence_length,
hidden_size)
# Initialize the position embeddings.
torch.nn.init.normal_(self.position_embeddings.weight, mean=0.0, std=init_method_std)
def get_layer():
return GPT2TransformerLayer(
hidden_size,
num_attention_heads,
attention_dropout_prob,
output_dropout_prob,
layernorm_epsilon,
unscaled_init_method(init_method_std),
output_layer_init_method=output_layer_init_method,
relative_encoding=relative_encoding)
# Transformer layers.
self.layers = torch.nn.ModuleList(
[get_layer() for _ in range(num_layers)])
# Final layer norm before output.
self.final_layernorm = torch.nn.LayerNorm(hidden_size, eps=layernorm_epsilon)
def forward(self, hidden_states, position_ids, attention_mask, *mems):
batch_size, query_length = hidden_states.size()[:2]
memory_length = mems[0].size(1) if mems else 0
key_length = query_length + memory_length
attention_mask = attention_mask[:, :, :, -query_length - memory_length:]
if self.relative_encoding:
# why drop twice here
# hidden_states = self.embedding_dropout(hidden_states)
position_sequence = torch.arange(key_length - 1, -1, -1.0, device=hidden_states.device,
dtype=hidden_states.dtype)
position_embeddings = self.position_embeddings(position_sequence)
# Apply dropout
position_embeddings = self.embedding_dropout(position_embeddings)
hidden_states = self.embedding_dropout(hidden_states)
else:
position_embeddings = self.position_embeddings(position_ids)
hidden_states = hidden_states + position_embeddings
hidden_states = self.embedding_dropout(hidden_states)
if self.max_memory_length > 0:
mem_layers = [hidden_states.detach()]
else:
mem_layers = []
def custom(start, end):
def custom_forward(*inputs):
layers_ = self.layers[start:end]
x_, inputs = inputs[0], inputs[1:]
if self.relative_encoding:
inputs, mems_ = inputs[:4], inputs[4:]
else:
inputs, mems_ = inputs[:1], inputs[1:]
for i, layer in enumerate(layers_):
mem_i_ = mems_[i] if mems_ else None
x_ = layer(x_, *inputs, mem=mem_i_)
if self.max_memory_length > 0:
mem_layers.append(x_.detach())
return x_
return custom_forward
if self.checkpoint_activations:
la = 0
num_layers = len(self.layers)
chunk_length = self.checkpoint_num_layers
while la < num_layers:
args = [hidden_states, attention_mask]
if self.relative_encoding:
args += [position_embeddings, self.r_w_bias, self.r_r_bias]
if mems:
args += mems[la: la + chunk_length]
hidden_states = checkpoint(custom(la, la + chunk_length), *args)
la += chunk_length
else:
for i, layer in enumerate(self.layers):
args = [hidden_states, attention_mask]
if self.relative_encoding:
args += [position_embeddings, self.r_w_bias, self.r_r_bias]
mem_i = mems[i] if mems else None
hidden_states = layer(*args, mem=mem_i)
if self.max_memory_length > 0:
mem_layers.append(hidden_states.detach())
# Final layer norm.
output = self.final_layernorm(hidden_states)
if self.max_memory_length > 0:
mem_layers = self.update_mems(mem_layers, mems)
return (output, *mem_layers)
def update_mems(self, hiddens, mems):
memory_length = mems[0].size(1) if mems else 0
query_length = hiddens[0].size(1)
new_memory_length = min(self.max_memory_length, memory_length + query_length)
new_mems = []
with torch.no_grad():
for i in range(len(hiddens)):
if new_memory_length <= query_length:
new_mems.append(hiddens[i][:, -new_memory_length:])
else:
new_mems.append(
torch.cat(
(mems[i][:, -new_memory_length + query_length:], hiddens[i]), dim=1))
return new_mems
class TransfoXLDenoisePreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and
a simple interface for downloading and loading pretrained models.
"""
config_class = TransfoXLDenoiseConfig
base_model_prefix = "transfo_xl_denoise"
supports_gradient_checkpointing = True
_keys_to_ignore_on_load_missing = [r"position_ids"]
def _init_weights(self, module):
""" Initialize the weights """
pass # to bypass the not implement error
class TransfoXLDenoiseModel(TransfoXLDenoisePreTrainedModel):
"""GPT-2 Language model.
The output of the forward method are the logits (parallel or
serial depending on the `parallel_output` flag.
"""
def __init__(self, config: TransfoXLDenoiseConfig):
super().__init__(config)
self.config = config
# Word embeddings (parallel).
self.word_embeddings = torch.nn.Embedding(config.vocab_size, config.hidden_size)
# Transformer
self.transformer = GPT2Transformer(config.num_layers,
config.hidden_size,
config.num_attention_heads,
config.max_sequence_length,
config.max_memory_length,
config.embedding_dropout_prob,
config.attention_dropout_prob,
config.output_dropout_prob,
config.checkpoint_activations,
config.checkpoint_num_layers,
relative_encoding=config.relative_encoding)
def forward(
self,
input_ids=None,
attention_mask=None,
position_ids=None,
hidden_states=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
**unused,
):
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
if the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask
is used in the cross-attention if the model is configured as a decoder.
Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with
each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids`
(those that don't have their past key value states given to this model) of shape `(batch_size, 1)`
instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up
decoding (see `past_key_values`).
"""
# Embeddings.
# one-hot batch_size * seq_len * vocab_size, can use gradient
# if input_ids.shape[-1] == self.word_embeddings.weight.shape[0]:
# words_embeddings = torch.einsum("ijk,kl->ijl", input_ids, self.word_embeddings.weight)
# else:
# print(f'input_ids {input_ids.device}, word_embedding {self.word_embeddings.weight.device}')
# words_embeddings = self.word_embeddings(input_ids)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
assert input_ids is not None and attention_mask is not None and position_ids is not None, \
"You have to specify input_ids, attention_mask, and position_ids. Check tokenizer.encode_plus for details"
if not hidden_states:
hidden_states = []
embeddings = self.word_embeddings(input_ids)
# Transformer.
transformer_output = self.transformer(
embeddings, position_ids, attention_mask, *hidden_states)
logits, *hidden_states = transformer_output
logits = F.linear(logits, self.word_embeddings.weight)
if not return_dict:
return logits, hidden_states
return TransfoXLDenoiseModelOutput(
logits=logits,
hidden_states=hidden_states
)