|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" RoFormer model configuration """ |
|
|
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
RoFormer_PRETRAINED_CONFIG_ARCHIVE_MAP = { |
|
|
|
} |
|
|
|
|
|
class RoFormerConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a :class:`~transformers.RoFormerModel`. It is |
|
used to instantiate a RoFormer model according to the specified arguments, defining the model architecture. |
|
Instantiating a configuration with the defaults will yield a similar configuration to that of the RoFormer |
|
`megatron-bert-uncased-345m <https://huggingface.co/nvidia/megatron-bert-uncased-345m>`__ architecture. |
|
|
|
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model |
|
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information. |
|
|
|
|
|
Args: |
|
vocab_size (:obj:`int`, `optional`, defaults to 29056): |
|
Vocabulary size of the RoFormer model. Defines the number of different tokens that can be represented |
|
by the :obj:`inputs_ids` passed when calling :class:`~transformers.RoFormerModel`. |
|
hidden_size (:obj:`int`, `optional`, defaults to 1024): |
|
Dimensionality of the encoder layers and the pooler layer. |
|
num_hidden_layers (:obj:`int`, `optional`, defaults to 24): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (:obj:`int`, `optional`, defaults to 16): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
intermediate_size (:obj:`int`, `optional`, defaults to 4096): |
|
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. |
|
hidden_act (:obj:`str` or :obj:`Callable`, `optional`, defaults to :obj:`"gelu"`): |
|
The non-linear activation function (function or string) in the encoder and pooler. If string, |
|
:obj:`"gelu"`, :obj:`"relu"`, :obj:`"silu"` and :obj:`"gelu_new"` are supported. |
|
hidden_dropout_prob (:obj:`float`, `optional`, defaults to 0.1): |
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. |
|
attention_probs_dropout_prob (:obj:`float`, `optional`, defaults to 0.1): |
|
The dropout ratio for the attention probabilities. |
|
max_position_embeddings (:obj:`int`, `optional`, defaults to 512): |
|
The maximum sequence length that this model might ever be used with. Typically set this to something large |
|
just in case (e.g., 512 or 1024 or 2048). |
|
type_vocab_size (:obj:`int`, `optional`, defaults to 2): |
|
The vocabulary size of the :obj:`token_type_ids` passed when calling |
|
:class:`~transformers.RoFormerModel`. |
|
initializer_range (:obj:`float`, `optional`, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-12): |
|
The epsilon used by the layer normalization layers. |
|
gradient_checkpointing (:obj:`bool`, `optional`, defaults to :obj:`False`): |
|
If True, use gradient checkpointing to save memory at the expense of slower backward pass. |
|
position_embedding_type (:obj:`str`, `optional`, defaults to :obj:`"absolute"`): |
|
Type of position embedding. Choose one of :obj:`"absolute"`, :obj:`"relative_key"`, |
|
:obj:`"relative_key_query"`. For positional embeddings use :obj:`"absolute"`. For more information on |
|
:obj:`"relative_key"`, please refer to `Self-Attention with Relative Position Representations (Shaw et al.) |
|
<https://arxiv.org/abs/1803.02155>`__. For more information on :obj:`"relative_key_query"`, please refer to |
|
`Method 4` in `Improve Transformer Models with Better Relative Position Embeddings (Huang et al.) |
|
<https://arxiv.org/abs/2009.13658>`__. |
|
use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). Only |
|
relevant if ``config.is_decoder=True``. |
|
|
|
Examples:: |
|
|
|
>>> from transformers import RoFormerModel, RoFormerConfig |
|
|
|
>>> # Initializing a RoFormer bert-base-uncased style configuration |
|
>>> configuration = RoFormerConfig() |
|
|
|
>>> # Initializing a model from the bert-base-uncased style configuration |
|
>>> model = RoFormerModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
""" |
|
model_type = "roformer" |
|
|
|
def __init__( |
|
self, |
|
vocab_size=29056, |
|
hidden_size=1024, |
|
num_hidden_layers=24, |
|
num_attention_heads=16, |
|
intermediate_size=4096, |
|
hidden_act="gelu", |
|
hidden_dropout_prob=0.1, |
|
attention_probs_dropout_prob=0.1, |
|
max_position_embeddings=512, |
|
type_vocab_size=2, |
|
initializer_range=0.02, |
|
layer_norm_eps=1e-12, |
|
pad_token_id=0, |
|
gradient_checkpointing=False, |
|
position_embedding_type="absolute", |
|
use_cache=True, |
|
**kwargs |
|
): |
|
super().__init__(pad_token_id=pad_token_id, **kwargs) |
|
|
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.hidden_act = hidden_act |
|
self.intermediate_size = intermediate_size |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
self.max_position_embeddings = max_position_embeddings |
|
self.type_vocab_size = type_vocab_size |
|
self.initializer_range = initializer_range |
|
self.layer_norm_eps = layer_norm_eps |
|
self.gradient_checkpointing = gradient_checkpointing |
|
self.position_embedding_type = position_embedding_type |
|
self.use_cache = use_cache |
|
|