|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch T5 model. """ |
|
|
|
|
|
import copy |
|
import math |
|
import os |
|
import warnings |
|
|
|
import torch |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss |
|
from torch.utils.checkpoint import checkpoint |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.file_utils import ( |
|
DUMMY_INPUTS, |
|
DUMMY_MASK, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
is_torch_fx_proxy, |
|
replace_return_docstrings, |
|
) |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutput, |
|
BaseModelOutputWithPastAndCrossAttentions, |
|
Seq2SeqLMOutput, |
|
Seq2SeqModelOutput, |
|
) |
|
from transformers.modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer |
|
from transformers.utils import logging |
|
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map |
|
from .configuration_megatron_t5 import T5Config |
|
import numpy as np |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CONFIG_FOR_DOC = "T5Config" |
|
_TOKENIZER_FOR_DOC = "T5Tokenizer" |
|
_CHECKPOINT_FOR_DOC = "T5-small" |
|
|
|
|
|
|
|
|
|
|
|
T5_PRETRAINED_MODEL_ARCHIVE_LIST = [ |
|
"T5-small", |
|
"T5-base", |
|
"T5-large", |
|
"T5-3b", |
|
"T5-11b", |
|
|
|
] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def load_tf_weights_in_T5(model, config, tf_checkpoint_path): |
|
"""Load tf checkpoints in a pytorch model.""" |
|
try: |
|
import re |
|
|
|
import numpy as np |
|
import tensorflow as tf |
|
except ImportError: |
|
logger.error( |
|
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " |
|
"https://www.tensorflow.org/install/ for installation instructions." |
|
) |
|
raise |
|
tf_path = os.path.abspath(tf_checkpoint_path) |
|
logger.info(f"Converting TensorFlow checkpoint from {tf_path}") |
|
|
|
init_vars = tf.train.list_variables(tf_path) |
|
names = [] |
|
tf_weights = {} |
|
for name, shape in init_vars: |
|
logger.info(f"Loading TF weight {name} with shape {shape}") |
|
array = tf.train.load_variable(tf_path, name) |
|
names.append(name) |
|
tf_weights[name] = array |
|
|
|
for txt_name in names: |
|
name = txt_name.split("/") |
|
|
|
|
|
if any( |
|
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", |
|
"AdamWeightDecayOptimizer_1", "global_step"] |
|
for n in name |
|
): |
|
logger.info(f"Skipping {'/'.join(name)}") |
|
tf_weights.pop(txt_name, None) |
|
continue |
|
if "_slot_" in name[-1]: |
|
logger.info(f"Skipping {'/'.join(name)}") |
|
tf_weights.pop(txt_name, None) |
|
continue |
|
pointer = model |
|
array = tf_weights[txt_name] |
|
|
|
for m_name in name: |
|
if re.fullmatch(r"[A-Za-z]+_\d+", m_name): |
|
scope_names = re.split(r"_(\d+)", m_name) |
|
else: |
|
scope_names = [m_name] |
|
if scope_names[0] in ["kernel", "scale", "embedding"]: |
|
pointer = getattr(pointer, "weight") |
|
elif scope_names[0] == "self_attention": |
|
pointer = getattr(pointer, "layer") |
|
pointer = pointer[0] |
|
elif scope_names[0] == "enc_dec_attention": |
|
pointer = getattr(pointer, "layer") |
|
pointer = pointer[1] |
|
elif scope_names[0] == "dense_relu_dense": |
|
pointer = getattr(pointer, "layer") |
|
pointer = pointer[2] |
|
elif scope_names[0] == "rms_norm": |
|
if hasattr(pointer, "layer_norm"): |
|
pointer = getattr(pointer, "layer_norm") |
|
elif hasattr(pointer, "final_layer_norm"): |
|
pointer = getattr(pointer, "final_layer_norm") |
|
elif scope_names[0] == "scale": |
|
pointer = getattr(pointer, "weight") |
|
elif scope_names[0] == "output_bias" or scope_names[0] == "beta": |
|
pointer = getattr(pointer, "bias") |
|
elif scope_names[0] == "squad": |
|
pointer = getattr(pointer, "classifier") |
|
elif scope_names[0] == "decoder" and name[1] == "logits": |
|
continue |
|
elif scope_names[0] == "logits": |
|
pointer = getattr(pointer, "lm_head") |
|
elif scope_names[0] == "wi" and len(scope_names) > 1 and scope_names[1].isdigit(): |
|
pointer = getattr(pointer, f"wi_{scope_names[1]}") |
|
continue |
|
else: |
|
try: |
|
pointer = getattr(pointer, scope_names[0]) |
|
except AttributeError: |
|
logger.info(f"Skipping {'/'.join(name)}") |
|
continue |
|
if len(scope_names) >= 2: |
|
num = int(scope_names[1]) |
|
pointer = pointer[num] |
|
if scope_names[0] not in ["kernel", "scale", "embedding"]: |
|
pointer = getattr(pointer, "weight") |
|
if scope_names[0] != "embedding": |
|
logger.info( |
|
f"Transposing numpy weight of shape {array.shape} for {name}") |
|
array = np.transpose(array) |
|
try: |
|
assert ( |
|
pointer.shape == array.shape |
|
), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" |
|
except AssertionError as e: |
|
e.args += (pointer.shape, array.shape) |
|
raise |
|
logger.info(f"Initialize PyTorch weight {name}") |
|
pointer.data = torch.from_numpy(array.astype(np.float32)) |
|
tf_weights.pop(txt_name, None) |
|
|
|
logger.info( |
|
f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}.") |
|
return model |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PARALLELIZE_DOCSTRING = r""" |
|
This is an experimental feature and is a subject to change at a moment's notice. |
|
|
|
Uses a device map to distribute attention modules of the model across several devices. If no device map is given, |
|
it will evenly distribute blocks across all devices. |
|
|
|
Args: |
|
device_map (:obj:`Dict[int, list]`, optional, defaults to None): |
|
A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always |
|
automatically mapped to the first device (for esoteric reasons). That means that the first device should |
|
have fewer attention modules mapped to it than other devices. For reference, the T5 models have the |
|
following number of attention modules: |
|
|
|
- T5-small: 6 |
|
- T5-base: 12 |
|
- T5-large: 24 |
|
- T5-3b: 24 |
|
- T5-11b: 24 |
|
|
|
Example:: |
|
|
|
# Here is an example of a device map on a machine with 4 GPUs using T5-3b, |
|
# which has a total of 24 attention modules: |
|
model = T5ForConditionalGeneration.from_pretrained('T5-3b') |
|
device_map = {0: [0, 1, 2], |
|
|
|
1: [3, 4, 5, 6, 7, 8, 9], |
|
2: [10, 11, 12, 13, 14, 15, 16], |
|
3: [17, 18, 19, 20, 21, 22, 23]} |
|
model.parallelize(device_map) |
|
""" |
|
DEPARALLELIZE_DOCSTRING = r""" |
|
Moves the model to cpu from a model parallel state. |
|
|
|
Example:: |
|
|
|
# On a 4 GPU machine with T5-3b: |
|
model = T5ForConditionalGeneration.from_pretrained('T5-3b') |
|
device_map = {0: [0, 1, 2], |
|
|
|
1: [3, 4, 5, 6, 7, 8, 9], |
|
2: [10, 11, 12, 13, 14, 15, 16], |
|
3: [17, 18, 19, 20, 21, 22, 23]} |
|
model.parallelize(device_map) # Splits the model across several devices |
|
model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache() |
|
""" |
|
|
|
|
|
class T5LayerNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
""" |
|
Construct a layernorm module in the T5 style No bias and no subtraction of mean. |
|
""" |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
|
|
variance = hidden_states.to(torch.float32).pow( |
|
2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * \ |
|
torch.rsqrt(variance + self.variance_epsilon) |
|
|
|
|
|
if self.weight.dtype == torch.float16: |
|
hidden_states = hidden_states.to(torch.float16) |
|
return self.weight * hidden_states |
|
|
|
|
|
class T5DenseReluDense(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
|
|
self.wi = nn.Linear(config.d_model, config.d_ff, bias=True) |
|
self.wo = nn.Linear(config.d_ff, config.d_model, bias=True) |
|
self.dropout = nn.Dropout(config.dropout_rate) |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.wi(hidden_states) |
|
hidden_states = nn.functional.relu(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.wo(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class T5DenseGeluDense(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
|
|
self.wi = nn.Linear(config.d_model, config.d_ff, bias=True) |
|
self.wo = nn.Linear(config.d_ff, config.d_model, bias=True) |
|
self.dropout = nn.Dropout(config.dropout_rate) |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.wi(hidden_states) |
|
hidden_states = nn.functional.gelu(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.wo(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class T5DenseGatedGeluDense(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
|
|
self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=True) |
|
self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=True) |
|
self.wo = nn.Linear(config.d_ff, config.d_model, bias=True) |
|
self.dropout = nn.Dropout(config.dropout_rate) |
|
self.gelu_act = ACT2FN["gelu_new"] |
|
|
|
def forward(self, hidden_states): |
|
hidden_gelu = self.gelu_act(self.wi_0(hidden_states)) |
|
hidden_linear = self.wi_1(hidden_states) |
|
hidden_states = hidden_gelu * hidden_linear |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.wo(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class T5LayerFF(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
|
|
|
|
self.layer_norm = nn.LayerNorm( |
|
config.d_model, eps=config.layer_norm_epsilon) |
|
if config.feed_forward_proj == "relu": |
|
self.DenseReluDense = T5DenseReluDense(config) |
|
elif config.feed_forward_proj == "gelu": |
|
self.DenseReluDense = T5DenseGeluDense(config) |
|
else: |
|
raise ValueError( |
|
f"{self.config.feed_forward_proj} is not supported. Choose between `relu` and `gated-gelu`" |
|
) |
|
self.dropout = nn.Dropout(config.dropout_rate) |
|
|
|
def forward(self, hidden_states): |
|
forwarded_states = self.layer_norm(hidden_states) |
|
forwarded_states = self.DenseReluDense(forwarded_states) |
|
hidden_states = hidden_states + self.dropout(forwarded_states) |
|
return hidden_states |
|
|
|
|
|
class T5Attention(nn.Module): |
|
def __init__(self, config: T5Config, has_relative_attention_bias=False): |
|
super().__init__() |
|
self.is_decoder = config.is_decoder |
|
self.has_relative_attention_bias = has_relative_attention_bias |
|
|
|
self.relative_attention_num_buckets = config.relative_attention_num_buckets |
|
self.d_model = config.d_model |
|
self.key_value_proj_dim = config.d_kv |
|
self.n_heads = config.num_heads |
|
self.dropout = config.dropout_rate |
|
self.inner_dim = self.n_heads * self.key_value_proj_dim |
|
|
|
|
|
|
|
|
|
self.q = nn.Linear(self.d_model, self.inner_dim, bias=True) |
|
self.k = nn.Linear(self.d_model, self.inner_dim, bias=True) |
|
self.v = nn.Linear(self.d_model, self.inner_dim, bias=True) |
|
|
|
self.o = nn.Linear(self.inner_dim, self.d_model, bias=True) |
|
|
|
if self.has_relative_attention_bias: |
|
self.relative_attention_bias = nn.Embedding( |
|
self.relative_attention_num_buckets, self.n_heads) |
|
self.pruned_heads = set() |
|
self.gradient_checkpointing = False |
|
|
|
def prune_heads(self, heads): |
|
if len(heads) == 0: |
|
return |
|
heads, index = find_pruneable_heads_and_indices( |
|
heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads |
|
) |
|
|
|
self.q = prune_linear_layer(self.q, index) |
|
self.k = prune_linear_layer(self.k, index) |
|
self.v = prune_linear_layer(self.v, index) |
|
|
|
self.o = prune_linear_layer(self.o, index, dim=1) |
|
|
|
self.n_heads = self.n_heads - len(heads) |
|
self.inner_dim = self.key_value_proj_dim * self.n_heads |
|
self.pruned_heads = self.pruned_heads.union(heads) |
|
|
|
@staticmethod |
|
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): |
|
""" |
|
Adapted from Mesh Tensorflow: |
|
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 |
|
|
|
Translate relative position to a bucket number for relative attention. The relative position is defined as |
|
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to |
|
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for |
|
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative |
|
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. |
|
This should allow for more graceful generalization to longer sequences than the model has been trained on |
|
|
|
Args: |
|
relative_position: an int32 Tensor |
|
bidirectional: a boolean - whether the attention is bidirectional |
|
num_buckets: an integer |
|
max_distance: an integer |
|
|
|
Returns: |
|
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) |
|
""" |
|
relative_buckets = 0 |
|
if bidirectional: |
|
num_buckets //= 2 |
|
relative_buckets += (relative_position > |
|
0).to(torch.long) * num_buckets |
|
relative_position = torch.abs(relative_position) |
|
else: |
|
relative_position = - \ |
|
torch.min(relative_position, |
|
torch.zeros_like(relative_position)) |
|
|
|
|
|
|
|
max_exact = num_buckets // 2 |
|
is_small = relative_position < max_exact |
|
|
|
|
|
relative_postion_if_large = max_exact + ( |
|
torch.log(relative_position.float() / max_exact) |
|
/ math.log(max_distance / max_exact) |
|
* (num_buckets - max_exact) |
|
).to(torch.long) |
|
relative_postion_if_large = torch.min( |
|
relative_postion_if_large, torch.full_like( |
|
relative_postion_if_large, num_buckets - 1) |
|
) |
|
|
|
relative_buckets += torch.where(is_small, |
|
relative_position, relative_postion_if_large) |
|
return relative_buckets |
|
|
|
def compute_bias(self, query_length, key_length): |
|
"""Compute binned relative position bias""" |
|
context_position = torch.arange( |
|
query_length, dtype=torch.long, device=self.relative_attention_bias.weight.device |
|
)[:, None] |
|
memory_position = torch.arange( |
|
key_length, dtype=torch.long, device=self.relative_attention_bias.weight.device |
|
)[None, :] |
|
relative_position = memory_position - \ |
|
context_position |
|
relative_position_bucket = self._relative_position_bucket( |
|
relative_position, |
|
bidirectional=(not self.is_decoder), |
|
num_buckets=self.relative_attention_num_buckets, |
|
) |
|
|
|
values = self.relative_attention_bias(relative_position_bucket) |
|
|
|
values = values.permute([2, 0, 1]).unsqueeze(0) |
|
return values |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
mask=None, |
|
key_value_states=None, |
|
position_bias=None, |
|
past_key_value=None, |
|
layer_head_mask=None, |
|
query_length=None, |
|
use_cache=False, |
|
output_attentions=False, |
|
): |
|
""" |
|
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). |
|
""" |
|
|
|
|
|
|
|
batch_size, seq_length = hidden_states.shape[:2] |
|
|
|
real_seq_length = seq_length |
|
|
|
if past_key_value is not None: |
|
assert ( |
|
len(past_key_value) == 2 |
|
), f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states" |
|
real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length |
|
|
|
key_length = real_seq_length if key_value_states is None else key_value_states.shape[ |
|
1] |
|
|
|
def shape(states): |
|
"""projection""" |
|
return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2) |
|
|
|
def unshape(states): |
|
"""reshape""" |
|
return states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim) |
|
|
|
def project(hidden_states, proj_layer, key_value_states, past_key_value): |
|
"""projects hidden states correctly to key/query states""" |
|
if key_value_states is None: |
|
|
|
|
|
hidden_states = shape(proj_layer(hidden_states)) |
|
elif past_key_value is None: |
|
|
|
|
|
hidden_states = shape(proj_layer(key_value_states)) |
|
|
|
if past_key_value is not None: |
|
if key_value_states is None: |
|
|
|
|
|
hidden_states = torch.cat( |
|
[past_key_value, hidden_states], dim=2) |
|
else: |
|
|
|
hidden_states = past_key_value |
|
return hidden_states |
|
|
|
|
|
|
|
query_states = shape(self.q(hidden_states)) |
|
|
|
|
|
key_states = project( |
|
hidden_states, self.k, key_value_states, past_key_value[ |
|
0] if past_key_value is not None else None |
|
) |
|
value_states = project( |
|
hidden_states, self.v, key_value_states, past_key_value[ |
|
1] if past_key_value is not None else None |
|
) |
|
|
|
|
|
scores = torch.matmul( |
|
query_states, key_states.transpose(3, 2) |
|
) |
|
|
|
if position_bias is None: |
|
if not self.has_relative_attention_bias: |
|
position_bias = torch.zeros( |
|
(1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype |
|
) |
|
if self.gradient_checkpointing and self.training: |
|
position_bias.requires_grad = True |
|
else: |
|
position_bias = self.compute_bias(real_seq_length, key_length) |
|
|
|
|
|
|
|
if past_key_value is not None: |
|
position_bias = position_bias[:, :, -hidden_states.size(1):, :] |
|
|
|
if mask is not None: |
|
|
|
position_bias = position_bias + mask |
|
|
|
|
|
|
|
scores = scores / math.sqrt(self.key_value_proj_dim) |
|
|
|
if mask is not None: |
|
scores = scores + mask |
|
|
|
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as( |
|
scores |
|
) |
|
|
|
attn_weights = nn.functional.dropout( |
|
attn_weights, p=0, training=self.training |
|
) |
|
|
|
|
|
if layer_head_mask is not None: |
|
attn_weights = attn_weights * layer_head_mask |
|
|
|
|
|
attn_output = unshape(torch.matmul(attn_weights, value_states)) |
|
|
|
attn_output = self.o(attn_output) |
|
|
|
present_key_value_state = (key_states, value_states) if ( |
|
self.is_decoder and use_cache) else None |
|
outputs = (attn_output,) + \ |
|
(present_key_value_state,) + (position_bias,) |
|
|
|
if output_attentions: |
|
outputs = outputs + (attn_weights,) |
|
return outputs |
|
|
|
|
|
class T5LayerSelfAttention(nn.Module): |
|
def __init__(self, config, has_relative_attention_bias=False): |
|
super().__init__() |
|
|
|
|
|
|
|
self.layer_norm = nn.LayerNorm( |
|
config.d_model, eps=config.layer_norm_epsilon) |
|
self.SelfAttention = T5Attention( |
|
config, has_relative_attention_bias=has_relative_attention_bias) |
|
|
|
self.dropout = nn.Dropout(config.dropout_rate) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
position_bias=None, |
|
layer_head_mask=None, |
|
past_key_value=None, |
|
use_cache=False, |
|
output_attentions=False, |
|
): |
|
normed_hidden_states = self.layer_norm(hidden_states) |
|
attention_output = self.SelfAttention( |
|
normed_hidden_states, |
|
mask=attention_mask, |
|
position_bias=position_bias, |
|
layer_head_mask=layer_head_mask, |
|
past_key_value=past_key_value, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
|
|
hidden_states = hidden_states + self.dropout(attention_output[0]) |
|
|
|
outputs = (hidden_states,) + attention_output[1:] |
|
return outputs |
|
|
|
|
|
class T5LayerCrossAttention(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
|
|
|
|
self.layer_norm = nn.LayerNorm( |
|
config.d_model, eps=config.layer_norm_epsilon) |
|
|
|
self.EncDecAttention = T5Attention( |
|
config, has_relative_attention_bias=False) |
|
|
|
self.dropout = nn.Dropout(config.dropout_rate) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
key_value_states, |
|
attention_mask=None, |
|
position_bias=None, |
|
layer_head_mask=None, |
|
past_key_value=None, |
|
use_cache=False, |
|
query_length=None, |
|
output_attentions=False, |
|
): |
|
normed_hidden_states = self.layer_norm(hidden_states) |
|
attention_output = self.EncDecAttention( |
|
normed_hidden_states, |
|
mask=attention_mask, |
|
key_value_states=key_value_states, |
|
position_bias=position_bias, |
|
layer_head_mask=layer_head_mask, |
|
past_key_value=past_key_value, |
|
use_cache=use_cache, |
|
query_length=query_length, |
|
output_attentions=output_attentions, |
|
) |
|
layer_output = hidden_states + self.dropout(attention_output[0]) |
|
|
|
outputs = (layer_output,) + attention_output[1:] |
|
return outputs |
|
|
|
|
|
class T5Block(nn.Module): |
|
def __init__(self, config, has_relative_attention_bias=False): |
|
super().__init__() |
|
self.is_decoder = config.is_decoder |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.T5LayerSelfAttention = T5LayerSelfAttention( |
|
config, has_relative_attention_bias=has_relative_attention_bias) |
|
if self.is_decoder: |
|
self.T5LayerCrossAttention = T5LayerCrossAttention( |
|
config) |
|
self.T5LayerFF = T5LayerFF(config) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
position_bias=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
encoder_decoder_position_bias=None, |
|
layer_head_mask=None, |
|
cross_attn_layer_head_mask=None, |
|
past_key_value=None, |
|
use_cache=False, |
|
output_attentions=False, |
|
return_dict=True, |
|
): |
|
|
|
if past_key_value is not None: |
|
assert self.is_decoder, "Only decoder can use `past_key_values`" |
|
expected_num_past_key_values = 2 if encoder_hidden_states is None else 4 |
|
|
|
if len(past_key_value) != expected_num_past_key_values: |
|
raise ValueError( |
|
f"There should be {expected_num_past_key_values} past states. " |
|
f"{'2 (past / key) for cross attention. ' if expected_num_past_key_values == 4 else ''}" |
|
f"Got {len(past_key_value)} past key / value states" |
|
) |
|
|
|
self_attn_past_key_value = past_key_value[:2] |
|
cross_attn_past_key_value = past_key_value[2:] |
|
else: |
|
self_attn_past_key_value, cross_attn_past_key_value = None, None |
|
|
|
|
|
self_attention_outputs = self.T5LayerSelfAttention( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
position_bias=position_bias, |
|
layer_head_mask=layer_head_mask, |
|
past_key_value=self_attn_past_key_value, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
hidden_states, present_key_value_state = self_attention_outputs[:2] |
|
|
|
attention_outputs = self_attention_outputs[2:] |
|
|
|
|
|
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any(): |
|
clamp_value = torch.finfo(hidden_states.dtype).max - 1000 |
|
hidden_states = torch.clamp( |
|
hidden_states, min=-clamp_value, max=clamp_value) |
|
|
|
do_cross_attention = self.is_decoder and encoder_hidden_states is not None |
|
if do_cross_attention: |
|
|
|
|
|
if present_key_value_state is not None: |
|
query_length = present_key_value_state[0].shape[2] |
|
else: |
|
query_length = None |
|
|
|
cross_attention_outputs = self.T5LayerCrossAttention( |
|
hidden_states, |
|
key_value_states=encoder_hidden_states, |
|
attention_mask=encoder_attention_mask, |
|
position_bias=encoder_decoder_position_bias, |
|
layer_head_mask=cross_attn_layer_head_mask, |
|
past_key_value=cross_attn_past_key_value, |
|
query_length=query_length, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
hidden_states = cross_attention_outputs[0] |
|
|
|
|
|
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any(): |
|
clamp_value = torch.finfo(hidden_states.dtype).max - 1000 |
|
hidden_states = torch.clamp( |
|
hidden_states, min=-clamp_value, max=clamp_value) |
|
|
|
|
|
if present_key_value_state is not None: |
|
present_key_value_state = present_key_value_state + \ |
|
cross_attention_outputs[1] |
|
|
|
|
|
attention_outputs = attention_outputs + cross_attention_outputs[2:] |
|
|
|
|
|
|
|
hidden_states = self.T5LayerFF(hidden_states) |
|
|
|
|
|
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any(): |
|
clamp_value = torch.finfo(hidden_states.dtype).max - 1000 |
|
hidden_states = torch.clamp( |
|
hidden_states, min=-clamp_value, max=clamp_value) |
|
|
|
outputs = (hidden_states,) |
|
|
|
if use_cache: |
|
outputs = outputs + (present_key_value_state,) + attention_outputs |
|
else: |
|
outputs = outputs + attention_outputs |
|
|
|
|
|
|
|
return outputs |
|
|
|
|
|
class T5PreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = T5Config |
|
load_tf_weights = load_tf_weights_in_T5 |
|
base_model_prefix = "transformer" |
|
is_parallelizable = True |
|
supports_gradient_checkpointing = True |
|
|
|
@property |
|
def dummy_inputs(self): |
|
input_ids = torch.tensor(DUMMY_INPUTS) |
|
input_mask = torch.tensor(DUMMY_MASK) |
|
dummy_inputs = { |
|
"decoder_input_ids": input_ids, |
|
"input_ids": input_ids, |
|
"decoder_attention_mask": input_mask, |
|
} |
|
return dummy_inputs |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights""" |
|
factor = self.config.initializer_factor |
|
if isinstance(module, T5LayerNorm): |
|
module.weight.data.fill_(factor * 1.0) |
|
elif isinstance(module, (T5Model, T5ForConditionalGeneration, T5EncoderModel)): |
|
|
|
|
|
|
|
|
|
|
|
module.shared.word_embeddings.weight.data.normal_( |
|
mean=0.0, std=factor * 1.0) |
|
module.shared.position_embeddings.weight.data.normal_( |
|
mean=0.0, std=factor * 1.0) |
|
elif isinstance(module, T5DenseReluDense): |
|
|
|
|
|
|
|
|
|
|
|
module.wi.weight.data.normal_( |
|
mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) |
|
if hasattr(module.wi, "bias") and module.wi.bias is not None: |
|
module.wi.bias.data.zero_() |
|
module.wo.weight.data.normal_( |
|
mean=0.0, std=factor * ((self.config.d_ff) ** -0.5)) |
|
if hasattr(module.wo, "bias") and module.wo.bias is not None: |
|
module.wo.bias.data.zero_() |
|
elif isinstance(module, T5DenseGeluDense): |
|
module.wi_0.weight.data.normal_( |
|
mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) |
|
if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None: |
|
module.wi_0.bias.data.zero_() |
|
module.wi_1.weight.data.normal_( |
|
mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) |
|
if hasattr(module.wi, "bias") and module.wi.bias is not None: |
|
module.wi.bias.data.zero_() |
|
module.wo.weight.data.normal_( |
|
mean=0.0, std=factor * ((self.config.d_ff) ** -0.5)) |
|
if hasattr(module.wo, "bias") and module.wo.bias is not None: |
|
module.wo.bias.data.zero_() |
|
elif isinstance(module, T5Attention): |
|
|
|
|
|
|
|
d_model = self.config.d_model |
|
key_value_proj_dim = self.config.d_kv |
|
n_heads = self.config.num_heads |
|
module.q.weight.data.normal_( |
|
mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5)) |
|
module.k.weight.data.normal_( |
|
mean=0.0, std=factor * (d_model ** -0.5)) |
|
module.v.weight.data.normal_( |
|
mean=0.0, std=factor * (d_model ** -0.5)) |
|
|
|
module.o.weight.data.normal_( |
|
mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5)) |
|
if module.has_relative_attention_bias: |
|
module.relative_attention_bias.weight.data.normal_( |
|
mean=0.0, std=factor * ((d_model) ** -0.5)) |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, (T5Attention, T5Stack)): |
|
module.gradient_checkpointing = value |
|
|
|
def _shift_right(self, input_ids): |
|
decoder_start_token_id = self.config.decoder_start_token_id |
|
pad_token_id = self.config.pad_token_id |
|
|
|
assert ( |
|
decoder_start_token_id is not None |
|
), "self.model.config.decoder_start_token_id has to be defined. "\ |
|
"In T5 it is usually set to the pad_token_id. See T5 docs for more information" |
|
|
|
|
|
if is_torch_fx_proxy(input_ids): |
|
|
|
shifted_input_ids = torch.full( |
|
input_ids.shape[:-1] + (1,), decoder_start_token_id) |
|
shifted_input_ids = torch.cat( |
|
[shifted_input_ids, input_ids[..., :-1]], dim=-1) |
|
else: |
|
shifted_input_ids = input_ids.new_zeros(input_ids.shape) |
|
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() |
|
shifted_input_ids[..., 0] = decoder_start_token_id |
|
|
|
assert pad_token_id is not None, "self.model.config.pad_token_id has to be defined." |
|
|
|
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) |
|
|
|
assert torch.all(shifted_input_ids >= 0).item( |
|
), "Verify that `shifted_input_ids` has only positive values" |
|
|
|
return shifted_input_ids |
|
|
|
|
|
class T5Embeddings(nn.Module): |
|
"""Construct the embeddings from word, position and token_type embeddings.""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.word_embeddings = nn.Embedding( |
|
config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) |
|
self.position_embeddings = nn.Embedding( |
|
config.max_position_embeddings, config.hidden_size) |
|
|
|
|
|
|
|
|
|
|
|
|
|
self.dropout = nn.Dropout(config.dropout_rate) |
|
|
|
|
|
self.register_buffer("position_ids", torch.arange( |
|
config.max_position_embeddings).expand((1, -1))) |
|
self.position_embedding_type = getattr( |
|
config, "position_embedding_type", "absolute") |
|
|
|
def forward( |
|
self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 |
|
): |
|
if input_ids is not None: |
|
input_shape = input_ids.size() |
|
else: |
|
input_shape = inputs_embeds.size()[:-1] |
|
|
|
seq_length = input_shape[1] |
|
|
|
if position_ids is None: |
|
position_ids = self.position_ids[:, |
|
past_key_values_length: seq_length + past_key_values_length] |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.word_embeddings(input_ids) |
|
|
|
embeddings = inputs_embeds |
|
if self.position_embedding_type == "absolute": |
|
position_embeddings = self.position_embeddings(position_ids) |
|
embeddings += position_embeddings |
|
|
|
|
|
|
|
embeddings = self.dropout(embeddings) |
|
return embeddings |
|
|
|
|
|
class T5Stack(T5PreTrainedModel): |
|
def __init__(self, config, embed_tokens=None): |
|
super().__init__(config) |
|
|
|
self.embed_tokens = embed_tokens |
|
self.is_decoder = config.is_decoder |
|
|
|
|
|
|
|
self.block = nn.ModuleList( |
|
[T5Block(config, has_relative_attention_bias=False) |
|
for _ in range(config.num_layers)] |
|
) |
|
|
|
|
|
self.final_layer_norm = nn.LayerNorm( |
|
config.d_model, eps=config.layer_norm_epsilon) |
|
|
|
self.dropout = nn.Dropout(config.dropout_rate) |
|
|
|
self.init_weights() |
|
|
|
self.model_parallel = False |
|
self.device_map = None |
|
self.gradient_checkpointing = False |
|
|
|
@add_start_docstrings(PARALLELIZE_DOCSTRING) |
|
def parallelize(self, device_map=None): |
|
|
|
self.device_map = ( |
|
get_device_map(len(self.block), range( |
|
torch.cuda.device_count())) if device_map is None else device_map |
|
) |
|
assert_device_map(self.device_map, len(self.block)) |
|
self.model_parallel = True |
|
self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + \ |
|
str(min(self.device_map.keys())) |
|
self.last_device = "cuda:" + str(max(self.device_map.keys())) |
|
|
|
for k, v in self.device_map.items(): |
|
for layer in v: |
|
cuda_device = "cuda:" + str(k) |
|
self.block[layer] = self.block[layer].to(cuda_device) |
|
|
|
|
|
|
|
self.embed_tokens = self.embed_tokens.to(self.first_device) |
|
self.embeddings = self.embeddings.to(self.first_device) |
|
|
|
self.final_layer_norm = self.final_layer_norm.to(self.last_device) |
|
|
|
@add_start_docstrings(PARALLELIZE_DOCSTRING) |
|
def deparallelize(self): |
|
self.model_parallel = False |
|
self.device_map = None |
|
self.first_device = "cpu" |
|
self.last_device = "cpu" |
|
for i in range(len(self.block)): |
|
self.block[i] = self.block[i].to("cpu") |
|
self.embed_tokens = self.embed_tokens.to("cpu") |
|
self.final_layer_norm = self.final_layer_norm.to("cpu") |
|
torch.cuda.empty_cache() |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, new_embeddings): |
|
self.embed_tokens = new_embeddings |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
position_ids=None, |
|
attention_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
inputs_embeds=None, |
|
head_mask=None, |
|
cross_attn_head_mask=None, |
|
past_key_values=None, |
|
use_cache=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
|
|
if self.model_parallel: |
|
torch.cuda.set_device(self.first_device) |
|
self.embed_tokens = self.embed_tokens.to(self.first_device) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
err_msg_prefix = "decoder_" if self.is_decoder else "" |
|
raise ValueError( |
|
f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time" |
|
) |
|
elif input_ids is not None: |
|
input_shape = input_ids.size() |
|
input_ids = input_ids.view(-1, input_shape[-1]) |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
else: |
|
err_msg_prefix = "decoder_" if self.is_decoder else "" |
|
raise ValueError( |
|
f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds") |
|
|
|
if inputs_embeds is None: |
|
assert self.embed_tokens is not None, "You have to initialize the model with valid token embeddings" |
|
|
|
|
|
|
|
inputs_embeds = self.embed_tokens(input_ids=input_ids) |
|
|
|
batch_size, seq_length = input_shape |
|
|
|
|
|
mask_seq_length = past_key_values[0][0].shape[2] + \ |
|
seq_length if past_key_values is not None else seq_length |
|
|
|
if use_cache is True: |
|
assert self.is_decoder, f":obj:`use_cache` can only be set to `True` if {self} is used as a decoder" |
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones( |
|
batch_size, mask_seq_length).to(inputs_embeds.device) |
|
if self.is_decoder and encoder_attention_mask is None and encoder_hidden_states is not None: |
|
encoder_seq_length = encoder_hidden_states.shape[1] |
|
encoder_attention_mask = torch.ones( |
|
batch_size, encoder_seq_length, device=inputs_embeds.device, dtype=torch.long |
|
) |
|
|
|
|
|
if past_key_values is None: |
|
past_key_values = [None] * len(self.block) |
|
|
|
|
|
|
|
extended_attention_mask = self.get_extended_attention_mask( |
|
attention_mask, input_shape, inputs_embeds.device) |
|
|
|
|
|
|
|
if self.is_decoder and encoder_hidden_states is not None: |
|
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() |
|
encoder_hidden_shape = ( |
|
encoder_batch_size, encoder_sequence_length) |
|
if encoder_attention_mask is None: |
|
encoder_attention_mask = torch.ones( |
|
encoder_hidden_shape, device=inputs_embeds.device) |
|
encoder_extended_attention_mask = self.invert_attention_mask( |
|
encoder_attention_mask) |
|
else: |
|
encoder_extended_attention_mask = None |
|
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.num_layers) |
|
cross_attn_head_mask = self.get_head_mask( |
|
cross_attn_head_mask, self.config.num_layers) |
|
present_key_value_states = () if use_cache else None |
|
all_hidden_states = () if output_hidden_states else None |
|
all_attentions = () if output_attentions else None |
|
all_cross_attentions = () if (output_attentions and self.is_decoder) else None |
|
position_bias = None |
|
encoder_decoder_position_bias = None |
|
|
|
hidden_states = self.dropout(inputs_embeds) |
|
|
|
for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)): |
|
|
|
layer_head_mask = head_mask[i] |
|
cross_attn_layer_head_mask = cross_attn_head_mask[i] |
|
|
|
if self.model_parallel: |
|
torch.cuda.set_device(hidden_states.device) |
|
|
|
if attention_mask is not None: |
|
attention_mask = attention_mask.to(hidden_states.device) |
|
if position_bias is not None: |
|
position_bias = position_bias.to(hidden_states.device) |
|
if encoder_hidden_states is not None: |
|
encoder_hidden_states = encoder_hidden_states.to( |
|
hidden_states.device) |
|
if encoder_extended_attention_mask is not None: |
|
encoder_extended_attention_mask = encoder_extended_attention_mask.to( |
|
hidden_states.device) |
|
if encoder_decoder_position_bias is not None: |
|
encoder_decoder_position_bias = encoder_decoder_position_bias.to( |
|
hidden_states.device) |
|
if layer_head_mask is not None: |
|
layer_head_mask = layer_head_mask.to(hidden_states.device) |
|
if cross_attn_layer_head_mask is not None: |
|
cross_attn_layer_head_mask = cross_attn_layer_head_mask.to( |
|
hidden_states.device) |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warn( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return tuple(module(*inputs, use_cache, output_attentions)) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = checkpoint( |
|
create_custom_forward(layer_module), |
|
hidden_states, |
|
extended_attention_mask, |
|
position_bias, |
|
encoder_hidden_states, |
|
encoder_extended_attention_mask, |
|
encoder_decoder_position_bias, |
|
layer_head_mask, |
|
cross_attn_layer_head_mask, |
|
None, |
|
) |
|
else: |
|
layer_outputs = layer_module( |
|
hidden_states, |
|
attention_mask=extended_attention_mask, |
|
position_bias=position_bias, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_extended_attention_mask, |
|
encoder_decoder_position_bias=encoder_decoder_position_bias, |
|
layer_head_mask=layer_head_mask, |
|
cross_attn_layer_head_mask=cross_attn_layer_head_mask, |
|
past_key_value=past_key_value, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
|
|
|
|
|
|
|
|
if use_cache is False: |
|
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:] |
|
|
|
hidden_states, present_key_value_state = layer_outputs[:2] |
|
|
|
|
|
|
|
|
|
position_bias = layer_outputs[2] |
|
if self.is_decoder and encoder_hidden_states is not None: |
|
encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3] |
|
|
|
if use_cache: |
|
present_key_value_states = present_key_value_states + \ |
|
(present_key_value_state,) |
|
|
|
if output_attentions: |
|
all_attentions = all_attentions + (layer_outputs[3],) |
|
if self.is_decoder: |
|
all_cross_attentions = all_cross_attentions + \ |
|
(layer_outputs[5],) |
|
|
|
|
|
if self.model_parallel: |
|
for k, v in self.device_map.items(): |
|
if i == v[-1] and "cuda:" + str(k) != self.last_device: |
|
hidden_states = hidden_states.to("cuda:" + str(k + 1)) |
|
|
|
hidden_states = self.final_layer_norm(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [ |
|
hidden_states, |
|
present_key_value_states, |
|
all_hidden_states, |
|
all_attentions, |
|
all_cross_attentions, |
|
] |
|
if v is not None |
|
) |
|
return BaseModelOutputWithPastAndCrossAttentions( |
|
last_hidden_state=hidden_states, |
|
past_key_values=present_key_value_states, |
|
hidden_states=all_hidden_states, |
|
attentions=all_attentions, |
|
cross_attentions=all_cross_attentions, |
|
) |
|
|
|
|
|
T5_START_DOCSTRING = r""" |
|
|
|
The T5 model was proposed in `Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer |
|
<https://arxiv.org/abs/1910.10683>`__ by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, |
|
Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It's an encoder decoder transformer pre-trained in a text-to-text |
|
denoising generative setting. |
|
|
|
This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic |
|
methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, |
|
pruning heads etc.) |
|
|
|
This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__ |
|
subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to |
|
general usage and behavior. |
|
|
|
Parameters: |
|
config (:class:`~transformers.T5Config`): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model |
|
weights. |
|
""" |
|
|
|
T5_INPUTS_DOCSTRING = """ |
|
Args: |
|
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you |
|
should be able to pad the inputs on both the right and the left. |
|
|
|
Indices can be obtained using :class:`~transformers.T5Tokenizer`. See |
|
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for |
|
detail. |
|
|
|
`What are input IDs? <../glossary.html#input-ids>`__ |
|
|
|
To know more on how to prepare :obj:`input_ids` for pretraining take a look a `T5 Training |
|
<./T5.html#training>`__. |
|
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
`What are attention masks? <../glossary.html#attention-mask>`__ |
|
decoder_input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`): |
|
Indices of decoder input sequence tokens in the vocabulary. |
|
|
|
Indices can be obtained using :class:`~transformers.T5Tokenizer`. See |
|
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for |
|
details. |
|
|
|
`What are decoder input IDs? <../glossary.html#decoder-input-ids>`__ |
|
|
|
T5 uses the :obj:`pad_token_id` as the starting token for :obj:`decoder_input_ids` generation. If |
|
:obj:`past_key_values` is used, optionally only the last :obj:`decoder_input_ids` have to be input (see |
|
:obj:`past_key_values`). |
|
|
|
To know more on how to prepare :obj:`decoder_input_ids` for pretraining take a look at `T5 Training |
|
<./T5.html#training>`__. |
|
decoder_attention_mask (:obj:`torch.BoolTensor` of shape |
|
:obj:`(batch_size, target_sequence_length)`, `optional`): |
|
Default behavior: generate a tensor that ignores pad tokens in :obj:`decoder_input_ids`. Causal mask will |
|
also be used by default. |
|
head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`): |
|
Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in ``[0, |
|
1]``: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
decoder_head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or |
|
:obj:`(num_layers, num_heads)`, `optional`): |
|
Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in ``[0, |
|
1]``: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
cross_attn_head_mask (:obj:`torch.Tensor` of shape :obj:`(num_heads,)` or |
|
:obj:`(num_layers, num_heads)`, `optional`): |
|
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in |
|
``[0, 1]``: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
encoder_outputs (:obj:`tuple(tuple(torch.FloatTensor)`, `optional`): |
|
Tuple consists of (:obj:`last_hidden_state`, :obj:`optional`: `hidden_states`, :obj:`optional`: |
|
`attentions`) :obj:`last_hidden_state` of shape :obj:`(batch_size, sequence_length, hidden_size)` is a |
|
sequence of hidden states at the output of the last layer of the encoder. Used in the cross-attention of |
|
the decoder. |
|
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having |
|
4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): |
|
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. |
|
|
|
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` |
|
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` |
|
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`. |
|
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): |
|
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. |
|
This is useful if you want more control over how to convert :obj:`input_ids` indices into associated |
|
vectors than the model's internal embedding lookup matrix. |
|
decoder_inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, target_sequence_length, hidden_size) |
|
`, `optional`): |
|
Optionally, instead of passing :obj:`decoder_input_ids` you can choose to directly pass an embedded |
|
representation. If :obj:`past_key_values` is used, optionally only the last :obj:`decoder_inputs_embeds` |
|
have to be input (see :obj:`past_key_values`). This is useful if you want more control over how to convert |
|
:obj:`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. |
|
|
|
If :obj:`decoder_input_ids` and :obj:`decoder_inputs_embeds` are both unset, :obj:`decoder_inputs_embeds` |
|
takes the value of :obj:`inputs_embeds`. |
|
|
|
use_cache (:obj:`bool`, `optional`): |
|
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up |
|
decoding (see :obj:`past_key_values`). |
|
|
|
output_attentions (:obj:`bool`, `optional`): |
|
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned |
|
tensors for more detail. |
|
output_hidden_states (:obj:`bool`, `optional`): |
|
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for |
|
more detail. |
|
return_dict (:obj:`bool`, `optional`): |
|
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. |
|
""" |
|
|
|
T5_ENCODER_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you |
|
should be able to pad the inputs on both the right and the left. |
|
|
|
Indices can be obtained using :class:`~transformers.T5Tokenizer`. See |
|
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for |
|
detail. |
|
|
|
To know more on how to prepare :obj:`input_ids` for pretraining take a look a `T5 Training |
|
<./T5.html#training>`__. |
|
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
`What are attention masks? <../glossary.html#attention-mask>`__ |
|
head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`): |
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): |
|
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. |
|
This is useful if you want more control over how to convert :obj:`input_ids` indices into associated |
|
vectors than the model's internal embedding lookup matrix. |
|
output_attentions (:obj:`bool`, `optional`): |
|
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned |
|
tensors for more detail. |
|
output_hidden_states (:obj:`bool`, `optional`): |
|
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for |
|
more detail. |
|
return_dict (:obj:`bool`, `optional`): |
|
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. |
|
""" |
|
|
|
|
|
__HEAD_MASK_WARNING_MSG = """ |
|
The input argument `head_mask` was split into two arguments `head_mask` and `decoder_head_mask`. Currently, |
|
`decoder_head_mask` is set to copy `head_mask`, but this feature is deprecated and will be removed in future versions. |
|
If you do not want to use any `decoder_head_mask` now, please set `decoder_head_mask = torch.ones(num_layers, |
|
num_heads)`. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare T5 Model transformer outputting raw hidden-states without any specific head on top.", |
|
T5_START_DOCSTRING, |
|
) |
|
class T5LMHead(nn.Module): |
|
"""Masked LM head for T5 |
|
|
|
Arguments: |
|
mpu_vocab_size: model parallel size of vocabulary. |
|
hidden_size: hidden size |
|
init_method: init method for weight initialization |
|
layernorm_epsilon: tolerance for layer norm divisions |
|
parallel_output: wether output logits being distributed or not. |
|
""" |
|
|
|
def __init__(self, config): |
|
super(T5LMHead, self).__init__() |
|
|
|
self.bias = torch.nn.Parameter(torch.zeros(config.vocab_size)) |
|
|
|
def forward(self, hidden_states, word_embeddings_weight): |
|
output = torch.nn.functional.linear(hidden_states, |
|
word_embeddings_weight, |
|
bias=self.bias) |
|
return output |
|
|
|
|
|
class T5Model(T5PreTrainedModel): |
|
_keys_to_ignore_on_load_missing = [ |
|
r"encoder\.embed_tokens\.weight", |
|
r"decoder\.embed_tokens\.weight", |
|
] |
|
_keys_to_ignore_on_load_unexpected = [ |
|
r"decoder\.block\.0\.layer\.1\.EncDecAttention\.relative_attention_bias\.weight", |
|
] |
|
|
|
def __init__(self, config: T5Config): |
|
super().__init__(config) |
|
|
|
|
|
self.shared = T5Embeddings(config) |
|
|
|
encoder_config = copy.deepcopy(config) |
|
encoder_config.is_decoder = False |
|
encoder_config.use_cache = False |
|
encoder_config.is_encoder_decoder = False |
|
self.encoder = T5Stack(encoder_config, self.shared) |
|
|
|
decoder_config = copy.deepcopy(config) |
|
decoder_config.is_decoder = True |
|
decoder_config.is_encoder_decoder = False |
|
decoder_config.num_layers = config.num_decoder_layers |
|
self.decoder = T5Stack(decoder_config, self.shared) |
|
|
|
self.init_weights() |
|
|
|
|
|
self.model_parallel = False |
|
self.device_map = None |
|
|
|
@add_start_docstrings(PARALLELIZE_DOCSTRING) |
|
def parallelize(self, device_map=None): |
|
self.device_map = ( |
|
get_device_map(len(self.encoder.block), |
|
range(torch.cuda.device_count())) |
|
if device_map is None |
|
else device_map |
|
) |
|
assert_device_map(self.device_map, len(self.encoder.block)) |
|
self.encoder.parallelize(self.device_map) |
|
self.decoder.parallelize(self.device_map) |
|
self.model_parallel = True |
|
|
|
@add_start_docstrings(DEPARALLELIZE_DOCSTRING) |
|
def deparallelize(self): |
|
self.encoder.deparallelize() |
|
self.decoder.deparallelize() |
|
self.encoder = self.encoder.to("cpu") |
|
self.decoder = self.decoder.to("cpu") |
|
self.model_parallel = False |
|
self.device_map = None |
|
torch.cuda.empty_cache() |
|
|
|
def get_input_embeddings(self): |
|
return self.shared |
|
|
|
def set_input_embeddings(self, new_embeddings): |
|
self.shared = new_embeddings |
|
self.encoder.set_input_embeddings(new_embeddings) |
|
self.decoder.set_input_embeddings(new_embeddings) |
|
|
|
def get_encoder(self): |
|
return self.encoder |
|
|
|
def get_decoder(self): |
|
return self.decoder |
|
|
|
def _prune_heads(self, heads_to_prune): |
|
""" |
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base |
|
class PreTrainedModel |
|
""" |
|
for layer, heads in heads_to_prune.items(): |
|
self.encoder.layer[layer].attention.prune_heads(heads) |
|
|
|
@add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
decoder_input_ids=None, |
|
decoder_attention_mask=None, |
|
head_mask=None, |
|
decoder_head_mask=None, |
|
cross_attn_head_mask=None, |
|
encoder_outputs=None, |
|
past_key_values=None, |
|
inputs_embeds=None, |
|
decoder_inputs_embeds=None, |
|
use_cache=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
r""" |
|
Returns: |
|
|
|
Example:: |
|
|
|
>>> from transformers import T5Tokenizer, T5Model |
|
|
|
>>> tokenizer = T5Tokenizer.from_pretrained('T5-small') |
|
>>> model = T5Model.from_pretrained('T5-small') |
|
|
|
>>> input_ids = tokenizer("Studies have been shown that owning a dog is good for you", |
|
return_tensors="pt").input_ids # Batch size 1 |
|
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 |
|
|
|
>>> # forward pass |
|
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) |
|
>>> last_hidden_states = outputs.last_hidden_state |
|
""" |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if head_mask is not None and decoder_head_mask is None: |
|
if self.config.num_layers == self.config.num_decoder_layers: |
|
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) |
|
decoder_head_mask = head_mask |
|
|
|
|
|
if encoder_outputs is None: |
|
encoder_outputs = self.encoder( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
inputs_embeds=inputs_embeds, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): |
|
encoder_outputs = BaseModelOutput( |
|
last_hidden_state=encoder_outputs[0], |
|
hidden_states=encoder_outputs[1] if len( |
|
encoder_outputs) > 1 else None, |
|
attentions=encoder_outputs[2] if len( |
|
encoder_outputs) > 2 else None, |
|
) |
|
|
|
hidden_states = encoder_outputs[0] |
|
if self.model_parallel: |
|
torch.cuda.set_device(self.decoder.first_device) |
|
|
|
if self.model_parallel: |
|
torch.cuda.set_device(self.decoder.first_device) |
|
hidden_states = hidden_states.to(self.decoder.first_device) |
|
if decoder_input_ids is not None: |
|
decoder_input_ids = decoder_input_ids.to( |
|
self.decoder.first_device) |
|
if attention_mask is not None: |
|
attention_mask = attention_mask.to(self.decoder.first_device) |
|
if decoder_attention_mask is not None: |
|
decoder_attention_mask = decoder_attention_mask.to( |
|
self.decoder.first_device) |
|
|
|
|
|
decoder_outputs = self.decoder( |
|
input_ids=decoder_input_ids, |
|
attention_mask=decoder_attention_mask, |
|
inputs_embeds=decoder_inputs_embeds, |
|
past_key_values=past_key_values, |
|
encoder_hidden_states=hidden_states, |
|
encoder_attention_mask=attention_mask, |
|
head_mask=decoder_head_mask, |
|
cross_attn_head_mask=cross_attn_head_mask, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
if not return_dict: |
|
return decoder_outputs + encoder_outputs |
|
|
|
return Seq2SeqModelOutput( |
|
last_hidden_state=decoder_outputs.last_hidden_state, |
|
past_key_values=decoder_outputs.past_key_values, |
|
decoder_hidden_states=decoder_outputs.hidden_states, |
|
decoder_attentions=decoder_outputs.attentions, |
|
cross_attentions=decoder_outputs.cross_attentions, |
|
encoder_last_hidden_state=encoder_outputs.last_hidden_state, |
|
encoder_hidden_states=encoder_outputs.hidden_states, |
|
encoder_attentions=encoder_outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings("""T5 Model with a `language modeling` head on top. """, T5_START_DOCSTRING) |
|
class T5ForConditionalGeneration(T5PreTrainedModel): |
|
_keys_to_ignore_on_load_missing = [ |
|
r"encoder\.embed_tokens\.weight", |
|
r"decoder\.embed_tokens\.weight", |
|
r"lm_head\.weight", |
|
] |
|
_keys_to_ignore_on_load_unexpected = [ |
|
r"decoder\.block\.0\.layer\.1\.EncDecAttention\.relative_attention_bias\.weight", |
|
] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.model_dim = config.d_model |
|
|
|
|
|
|
|
self.shared = T5Embeddings(config) |
|
|
|
encoder_config = copy.deepcopy(config) |
|
encoder_config.is_decoder = False |
|
encoder_config.use_cache = False |
|
encoder_config.is_encoder_decoder = False |
|
self.encoder = T5Stack(encoder_config, self.shared) |
|
|
|
decoder_config = copy.deepcopy(config) |
|
decoder_config.is_decoder = True |
|
decoder_config.is_encoder_decoder = False |
|
decoder_config.num_layers = config.num_decoder_layers |
|
self.decoder = T5Stack(decoder_config, self.shared) |
|
|
|
|
|
self.lm_head_bias = torch.nn.Parameter(torch.zeros(config.vocab_size)) |
|
|
|
self.init_weights() |
|
|
|
|
|
self.model_parallel = False |
|
self.device_map = None |
|
|
|
@add_start_docstrings(PARALLELIZE_DOCSTRING) |
|
def parallelize(self, device_map=None): |
|
self.device_map = ( |
|
get_device_map(len(self.encoder.block), |
|
range(torch.cuda.device_count())) |
|
if device_map is None |
|
else device_map |
|
) |
|
assert_device_map(self.device_map, len(self.encoder.block)) |
|
self.encoder.parallelize(self.device_map) |
|
self.decoder.parallelize(self.device_map) |
|
self.lm_head = self.lm_head.to(self.decoder.first_device) |
|
self.model_parallel = True |
|
|
|
@add_start_docstrings(DEPARALLELIZE_DOCSTRING) |
|
def deparallelize(self): |
|
self.encoder.deparallelize() |
|
self.decoder.deparallelize() |
|
self.encoder = self.encoder.to("cpu") |
|
self.decoder = self.decoder.to("cpu") |
|
self.lm_head = self.lm_head.to("cpu") |
|
self.model_parallel = False |
|
self.device_map = None |
|
torch.cuda.empty_cache() |
|
|
|
def get_input_embeddings(self): |
|
return self.shared |
|
|
|
def set_input_embeddings(self, new_embeddings): |
|
self.shared = new_embeddings |
|
self.encoder.set_input_embeddings(new_embeddings) |
|
self.decoder.set_input_embeddings(new_embeddings) |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head_bias |
|
|
|
def get_encoder(self): |
|
return self.encoder |
|
|
|
def get_decoder(self): |
|
return self.decoder |
|
|
|
def generate(self, input_ids=None, max_length=512): |
|
|
|
input_ids = torch.tensor(input_ids) |
|
if len(input_ids.shape) < 2: |
|
input_ids = input_ids.unsqueeze(0) |
|
decode_input_id = [21128] |
|
for i in range(max_length): |
|
tensor_decode_input_id = torch.tensor([decode_input_id]) |
|
forword_output = self.forward(input_ids=input_ids, |
|
decoder_input_ids=tensor_decode_input_id) |
|
logits = forword_output.logits |
|
logits = torch.nn.functional.softmax( |
|
logits, dim=-1).cpu().detach().numpy()[0] |
|
|
|
last_output_id = int(np.random.choice( |
|
logits.shape[1], p=logits[-1])) |
|
if last_output_id == 21129: |
|
break |
|
else: |
|
decode_input_id.append(last_output_id) |
|
|
|
return decode_input_id |
|
|
|
@add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
decoder_input_ids=None, |
|
decoder_attention_mask=None, |
|
head_mask=None, |
|
decoder_head_mask=None, |
|
cross_attn_head_mask=None, |
|
encoder_outputs=None, |
|
past_key_values=None, |
|
inputs_embeds=None, |
|
decoder_inputs_embeds=None, |
|
labels=None, |
|
use_cache=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
r""" |
|
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): |
|
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[-100, 0, ..., |
|
config.vocab_size - 1]`. All labels set to ``-100`` are ignored (masked), the loss is only computed for |
|
labels in ``[0, ..., config.vocab_size]`` |
|
|
|
Returns: |
|
Examples:: |
|
|
|
>>> from transformers import T5Tokenizer, T5ForConditionalGeneration |
|
|
|
>>> tokenizer = T5Tokenizer.from_pretrained('T5-small') |
|
>>> model = T5ForConditionalGeneration.from_pretrained('T5-small') |
|
|
|
>>> # training |
|
>>> input_ids = tokenizer('The <extra_id_0> walks in <extra_id_1> park', return_tensors='pt').input_ids |
|
>>> labels = tokenizer('<extra_id_0> cute dog <extra_id_1> the <extra_id_2>', return_tensors='pt').input_ids |
|
>>> outputs = model(input_ids=input_ids, labels=labels) |
|
>>> loss = outputs.loss |
|
>>> logits = outputs.logits |
|
|
|
>>> # inference |
|
>>> input_ids = tokenizer("summarize: studies have shown that owning a dog is good for you", |
|
return_tensors="pt").input_ids # Batch size 1 |
|
>>> outputs = model.generate(input_ids) |
|
>>> print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
>>> # studies have shown that owning a dog is good for you. |
|
""" |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if head_mask is not None and decoder_head_mask is None: |
|
if self.config.num_layers == self.config.num_decoder_layers: |
|
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) |
|
decoder_head_mask = head_mask |
|
|
|
|
|
if encoder_outputs is None: |
|
|
|
encoder_outputs = self.encoder( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
inputs_embeds=inputs_embeds, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): |
|
encoder_outputs = BaseModelOutput( |
|
last_hidden_state=encoder_outputs[0], |
|
hidden_states=encoder_outputs[1] if len( |
|
encoder_outputs) > 1 else None, |
|
attentions=encoder_outputs[2] if len( |
|
encoder_outputs) > 2 else None, |
|
) |
|
|
|
hidden_states = encoder_outputs[0] |
|
|
|
if self.model_parallel: |
|
torch.cuda.set_device(self.decoder.first_device) |
|
|
|
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None: |
|
|
|
decoder_input_ids = self._shift_right(labels) |
|
|
|
|
|
if self.model_parallel: |
|
torch.cuda.set_device(self.decoder.first_device) |
|
hidden_states = hidden_states.to(self.decoder.first_device) |
|
if decoder_input_ids is not None: |
|
decoder_input_ids = decoder_input_ids.to( |
|
self.decoder.first_device) |
|
if attention_mask is not None: |
|
attention_mask = attention_mask.to(self.decoder.first_device) |
|
if decoder_attention_mask is not None: |
|
decoder_attention_mask = decoder_attention_mask.to( |
|
self.decoder.first_device) |
|
|
|
|
|
decoder_outputs = self.decoder( |
|
input_ids=decoder_input_ids, |
|
attention_mask=decoder_attention_mask, |
|
inputs_embeds=decoder_inputs_embeds, |
|
past_key_values=past_key_values, |
|
encoder_hidden_states=hidden_states, |
|
encoder_attention_mask=attention_mask, |
|
head_mask=decoder_head_mask, |
|
cross_attn_head_mask=cross_attn_head_mask, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output = decoder_outputs.last_hidden_state |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lm_logits = torch.nn.functional.linear( |
|
sequence_output, self.shared.word_embeddings.weight, bias=self.lm_head_bias) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss(ignore_index=-100) |
|
loss = loss_fct( |
|
lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1)) |
|
|
|
|
|
|
|
if not return_dict: |
|
output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return Seq2SeqLMOutput( |
|
loss=loss, |
|
logits=lm_logits, |
|
past_key_values=decoder_outputs.past_key_values, |
|
decoder_hidden_states=decoder_outputs.hidden_states, |
|
decoder_attentions=decoder_outputs.attentions, |
|
cross_attentions=decoder_outputs.cross_attentions, |
|
encoder_last_hidden_state=encoder_outputs.last_hidden_state, |
|
encoder_hidden_states=encoder_outputs.hidden_states, |
|
encoder_attentions=encoder_outputs.attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids, |
|
past=None, |
|
attention_mask=None, |
|
head_mask=None, |
|
decoder_head_mask=None, |
|
cross_attn_head_mask=None, |
|
use_cache=None, |
|
encoder_outputs=None, |
|
**kwargs |
|
): |
|
|
|
|
|
if past is not None: |
|
input_ids = input_ids[:, -1:] |
|
|
|
return { |
|
"decoder_input_ids": input_ids, |
|
"past_key_values": past, |
|
"encoder_outputs": encoder_outputs, |
|
"attention_mask": attention_mask, |
|
"head_mask": head_mask, |
|
"decoder_head_mask": decoder_head_mask, |
|
"cross_attn_head_mask": cross_attn_head_mask, |
|
"use_cache": use_cache, |
|
} |
|
|
|
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): |
|
return self._shift_right(labels) |
|
|
|
def _reorder_cache(self, past, beam_idx): |
|
|
|
|
|
if past is None: |
|
logger.warning( |
|
"You might want to consider setting `use_cache=True` to speed up decoding") |
|
return past |
|
|
|
reordered_decoder_past = () |
|
for layer_past_states in past: |
|
|
|
|
|
reordered_layer_past_states = () |
|
for layer_past_state in layer_past_states: |
|
|
|
reordered_layer_past_states = reordered_layer_past_states + ( |
|
layer_past_state.index_select( |
|
0, beam_idx.to(layer_past_state.device)), |
|
) |
|
|
|
assert reordered_layer_past_states[0].shape == layer_past_states[0].shape |
|
assert len(reordered_layer_past_states) == len(layer_past_states) |
|
|
|
reordered_decoder_past = reordered_decoder_past + \ |
|
(reordered_layer_past_states,) |
|
return reordered_decoder_past |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare T5 Model transformer outputting encoder's raw hidden-states without any specific head on top.", |
|
T5_START_DOCSTRING, |
|
) |
|
class T5EncoderModel(T5PreTrainedModel): |
|
authorized_missing_keys = [ |
|
r"encoder\.embed_tokens\.weight", |
|
] |
|
|
|
def __init__(self, config: T5Config): |
|
super().__init__(config) |
|
|
|
|
|
self.shared = T5Embeddings(config) |
|
|
|
encoder_config = copy.deepcopy(config) |
|
encoder_config.use_cache = False |
|
encoder_config.is_encoder_decoder = False |
|
self.encoder = T5Stack(encoder_config, self.shared) |
|
|
|
self.init_weights() |
|
|
|
|
|
self.model_parallel = False |
|
self.device_map = None |
|
|
|
@add_start_docstrings(PARALLELIZE_DOCSTRING) |
|
def parallelize(self, device_map=None): |
|
self.device_map = ( |
|
get_device_map(len(self.encoder.block), |
|
range(torch.cuda.device_count())) |
|
if device_map is None |
|
else device_map |
|
) |
|
assert_device_map(self.device_map, len(self.encoder.block)) |
|
self.encoder.parallelize(self.device_map) |
|
self.model_parallel = True |
|
|
|
@add_start_docstrings(DEPARALLELIZE_DOCSTRING) |
|
def deparallelize(self): |
|
self.encoder.deparallelize() |
|
self.encoder = self.encoder.to("cpu") |
|
self.model_parallel = False |
|
self.device_map = None |
|
torch.cuda.empty_cache() |
|
|
|
def get_input_embeddings(self): |
|
return self.shared |
|
|
|
def set_input_embeddings(self, new_embeddings): |
|
self.shared = new_embeddings |
|
self.encoder.set_input_embeddings(new_embeddings) |
|
|
|
def get_encoder(self): |
|
return self.encoder |
|
|
|
def _prune_heads(self, heads_to_prune): |
|
""" |
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base |
|
class PreTrainedModel |
|
""" |
|
for layer, heads in heads_to_prune.items(): |
|
self.encoder.layer[layer].attention.prune_heads(heads) |
|
|
|
@add_start_docstrings_to_model_forward(T5_ENCODER_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
head_mask=None, |
|
inputs_embeds=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
r""" |
|
Returns: |
|
|
|
Example:: |
|
|
|
>>> from transformers import T5Tokenizer, T5EncoderModel |
|
>>> tokenizer = T5Tokenizer.from_pretrained('T5-small') |
|
>>> model = T5EncoderModel.from_pretrained('T5-small') |
|
>>> input_ids = tokenizer("Studies have been shown that owning a dog is good for you", |
|
return_tensors="pt").input_ids # Batch size 1 |
|
>>> outputs = model(input_ids=input_ids) |
|
>>> last_hidden_states = outputs.last_hidden_state |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
encoder_outputs = self.encoder( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
inputs_embeds=inputs_embeds, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
return encoder_outputs |
|
|