|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PyTorch Longformer model. """ |
|
|
|
import math |
|
from dataclasses import dataclass |
|
from typing import Optional, Tuple |
|
from numpy.lib.function_base import kaiser |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
|
|
from transformers.activations import ACT2FN, gelu |
|
from transformers.file_utils import ( |
|
ModelOutput, |
|
add_code_sample_docstrings, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
replace_return_docstrings, |
|
) |
|
from transformers.modeling_utils import ( |
|
PreTrainedModel, |
|
apply_chunking_to_forward, |
|
find_pruneable_heads_and_indices, |
|
prune_linear_layer, |
|
) |
|
from transformers.utils import logging |
|
from transformers import LongformerConfig |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CHECKPOINT_FOR_DOC = "allenai/longformer-base-4096" |
|
_CONFIG_FOR_DOC = "LongformerConfig" |
|
_TOKENIZER_FOR_DOC = "LongformerTokenizer" |
|
|
|
LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [ |
|
"allenai/longformer-base-4096", |
|
"allenai/longformer-large-4096", |
|
"allenai/longformer-large-4096-finetuned-triviaqa", |
|
"allenai/longformer-base-4096-extra.pos.embd.only", |
|
"allenai/longformer-large-4096-extra.pos.embd.only", |
|
|
|
] |
|
|
|
|
|
@dataclass |
|
class LongformerBaseModelOutput(ModelOutput): |
|
""" |
|
Base class for Longformer's outputs, with potential hidden states, local and global attentions. |
|
|
|
Args: |
|
last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`): |
|
Sequence of hidden-states at the output of the last layer of the model. |
|
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): |
|
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) |
|
of shape :obj:`(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs. |
|
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): |
|
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, |
|
sequence_length, x + attention_window + 1)`, where ``x`` is the number of tokens with global attention |
|
mask. |
|
|
|
Local attentions weights after the attention softmax, used to compute the weighted average in the |
|
self-attention heads. Those are the attention weights from every token in the sequence to every token with |
|
global attention (first ``x`` values) and to every token in the attention window (remaining |
|
``attention_window + 1`` values). Note that the first ``x`` values refer to tokens with fixed positions in |
|
the text, but the remaining ``attention_window + 1`` values refer to tokens with relative positions: the |
|
attention weight of a token to itself is located at index ``x + attention_window / 2`` and the |
|
``attention_window / 2`` preceding (succeeding) values are the attention weights to the ``attention_window |
|
/ 2`` preceding (succeeding) tokens. If the attention window contains a token with global attention, the |
|
attention weight at the corresponding index is set to 0; the value should be accessed from the first ``x`` |
|
attention weights. If a token has global attention, the attention weights to all other tokens in |
|
:obj:`attentions` is set to 0, the values should be accessed from :obj:`global_attentions`. |
|
global_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): |
|
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, |
|
sequence_length, x)`, where ``x`` is the number of tokens with global attention mask. |
|
|
|
Global attentions weights after the attention softmax, used to compute the weighted average in the |
|
self-attention heads. Those are the attention weights from every token with global attention to every token |
|
in the sequence. |
|
""" |
|
|
|
last_hidden_state: torch.FloatTensor |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
global_attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
@dataclass |
|
class LongformerBaseModelOutputWithPooling(ModelOutput): |
|
""" |
|
Base class for Longformer's outputs that also contains a pooling of the last hidden states. |
|
|
|
Args: |
|
last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`): |
|
Sequence of hidden-states at the output of the last layer of the model. |
|
pooler_output (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, hidden_size)`): |
|
Last layer hidden-state of the first token of the sequence (classification token) further processed by a |
|
Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence |
|
prediction (classification) objective during pretraining. |
|
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): |
|
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) |
|
of shape :obj:`(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs. |
|
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): |
|
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, |
|
sequence_length, x + attention_window + 1)`, where ``x`` is the number of tokens with global attention |
|
mask. |
|
|
|
Local attentions weights after the attention softmax, used to compute the weighted average in the |
|
self-attention heads. Those are the attention weights from every token in the sequence to every token with |
|
global attention (first ``x`` values) and to every token in the attention window (remaining |
|
``attention_window + 1`` values). Note that the first ``x`` values refer to tokens with fixed positions in |
|
the text, but the remaining ``attention_window + 1`` values refer to tokens with relative positions: the |
|
attention weight of a token to itself is located at index ``x + attention_window / 2`` and the |
|
``attention_window / 2`` preceding (succeeding) values are the attention weights to the ``attention_window |
|
/ 2`` preceding (succeeding) tokens. If the attention window contains a token with global attention, the |
|
attention weight at the corresponding index is set to 0; the value should be accessed from the first ``x`` |
|
attention weights. If a token has global attention, the attention weights to all other tokens in |
|
:obj:`attentions` is set to 0, the values should be accessed from :obj:`global_attentions`. |
|
global_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): |
|
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, |
|
sequence_length, x)`, where ``x`` is the number of tokens with global attention mask. |
|
|
|
Global attentions weights after the attention softmax, used to compute the weighted average in the |
|
self-attention heads. Those are the attention weights from every token with global attention to every token |
|
in the sequence. |
|
""" |
|
|
|
last_hidden_state: torch.FloatTensor |
|
pooler_output: torch.FloatTensor = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
global_attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
@dataclass |
|
class LongformerMaskedLMOutput(ModelOutput): |
|
""" |
|
Base class for masked language models outputs. |
|
|
|
Args: |
|
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided): |
|
Masked language modeling (MLM) loss. |
|
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`): |
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). |
|
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): |
|
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) |
|
of shape :obj:`(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs. |
|
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): |
|
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, |
|
sequence_length, x + attention_window + 1)`, where ``x`` is the number of tokens with global attention |
|
mask. |
|
|
|
Local attentions weights after the attention softmax, used to compute the weighted average in the |
|
self-attention heads. Those are the attention weights from every token in the sequence to every token with |
|
global attention (first ``x`` values) and to every token in the attention window (remaining |
|
``attention_window + 1`` values). Note that the first ``x`` values refer to tokens with fixed positions in |
|
the text, but the remaining ``attention_window + 1`` values refer to tokens with relative positions: the |
|
attention weight of a token to itself is located at index ``x + attention_window / 2`` and the |
|
``attention_window / 2`` preceding (succeeding) values are the attention weights to the ``attention_window |
|
/ 2`` preceding (succeeding) tokens. If the attention window contains a token with global attention, the |
|
attention weight at the corresponding index is set to 0; the value should be accessed from the first ``x`` |
|
attention weights. If a token has global attention, the attention weights to all other tokens in |
|
:obj:`attentions` is set to 0, the values should be accessed from :obj:`global_attentions`. |
|
global_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): |
|
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, |
|
sequence_length, x)`, where ``x`` is the number of tokens with global attention mask. |
|
|
|
Global attentions weights after the attention softmax, used to compute the weighted average in the |
|
self-attention heads. Those are the attention weights from every token with global attention to every token |
|
in the sequence. |
|
""" |
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
logits: torch.FloatTensor = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
global_attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
@dataclass |
|
class LongformerQuestionAnsweringModelOutput(ModelOutput): |
|
""" |
|
Base class for outputs of question answering Longformer models. |
|
|
|
Args: |
|
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided): |
|
Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. |
|
start_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`): |
|
Span-start scores (before SoftMax). |
|
end_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`): |
|
Span-end scores (before SoftMax). |
|
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): |
|
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) |
|
of shape :obj:`(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs. |
|
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): |
|
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, |
|
sequence_length, x + attention_window + 1)`, where ``x`` is the number of tokens with global attention |
|
mask. |
|
|
|
Local attentions weights after the attention softmax, used to compute the weighted average in the |
|
self-attention heads. Those are the attention weights from every token in the sequence to every token with |
|
global attention (first ``x`` values) and to every token in the attention window (remaining |
|
``attention_window + 1`` values). Note that the first ``x`` values refer to tokens with fixed positions in |
|
the text, but the remaining ``attention_window + 1`` values refer to tokens with relative positions: the |
|
attention weight of a token to itself is located at index ``x + attention_window / 2`` and the |
|
``attention_window / 2`` preceding (succeeding) values are the attention weights to the ``attention_window |
|
/ 2`` preceding (succeeding) tokens. If the attention window contains a token with global attention, the |
|
attention weight at the corresponding index is set to 0; the value should be accessed from the first ``x`` |
|
attention weights. If a token has global attention, the attention weights to all other tokens in |
|
:obj:`attentions` is set to 0, the values should be accessed from :obj:`global_attentions`. |
|
global_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): |
|
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, |
|
sequence_length, x)`, where ``x`` is the number of tokens with global attention mask. |
|
|
|
Global attentions weights after the attention softmax, used to compute the weighted average in the |
|
self-attention heads. Those are the attention weights from every token with global attention to every token |
|
in the sequence. |
|
""" |
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
start_logits: torch.FloatTensor = None |
|
end_logits: torch.FloatTensor = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
global_attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
@dataclass |
|
class LongformerSequenceClassifierOutput(ModelOutput): |
|
""" |
|
Base class for outputs of sentence classification models. |
|
|
|
Args: |
|
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided): |
|
Classification (or regression if config.num_labels==1) loss. |
|
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`): |
|
Classification (or regression if config.num_labels==1) scores (before SoftMax). |
|
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): |
|
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) |
|
of shape :obj:`(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs. |
|
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): |
|
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, |
|
sequence_length, x + attention_window + 1)`, where ``x`` is the number of tokens with global attention |
|
mask. |
|
|
|
Local attentions weights after the attention softmax, used to compute the weighted average in the |
|
self-attention heads. Those are the attention weights from every token in the sequence to every token with |
|
global attention (first ``x`` values) and to every token in the attention window (remaining |
|
``attention_window + 1`` values). Note that the first ``x`` values refer to tokens with fixed positions in |
|
the text, but the remaining ``attention_window + 1`` values refer to tokens with relative positions: the |
|
attention weight of a token to itself is located at index ``x + attention_window / 2`` and the |
|
``attention_window / 2`` preceding (succeeding) values are the attention weights to the ``attention_window |
|
/ 2`` preceding (succeeding) tokens. If the attention window contains a token with global attention, the |
|
attention weight at the corresponding index is set to 0; the value should be accessed from the first ``x`` |
|
attention weights. If a token has global attention, the attention weights to all other tokens in |
|
:obj:`attentions` is set to 0, the values should be accessed from :obj:`global_attentions`. |
|
global_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): |
|
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, |
|
sequence_length, x)`, where ``x`` is the number of tokens with global attention mask. |
|
|
|
Global attentions weights after the attention softmax, used to compute the weighted average in the |
|
self-attention heads. Those are the attention weights from every token with global attention to every token |
|
in the sequence. |
|
""" |
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
logits: torch.FloatTensor = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
global_attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
@dataclass |
|
class LongformerMultipleChoiceModelOutput(ModelOutput): |
|
""" |
|
Base class for outputs of multiple choice Longformer models. |
|
|
|
Args: |
|
loss (:obj:`torch.FloatTensor` of shape `(1,)`, `optional`, returned when :obj:`labels` is provided): |
|
Classification loss. |
|
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_choices)`): |
|
`num_choices` is the second dimension of the input tensors. (see `input_ids` above). |
|
|
|
Classification scores (before SoftMax). |
|
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): |
|
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) |
|
of shape :obj:`(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs. |
|
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): |
|
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, |
|
sequence_length, x + attention_window + 1)`, where ``x`` is the number of tokens with global attention |
|
mask. |
|
|
|
Local attentions weights after the attention softmax, used to compute the weighted average in the |
|
self-attention heads. Those are the attention weights from every token in the sequence to every token with |
|
global attention (first ``x`` values) and to every token in the attention window (remaining |
|
``attention_window + 1`` values). Note that the first ``x`` values refer to tokens with fixed positions in |
|
the text, but the remaining ``attention_window + 1`` values refer to tokens with relative positions: the |
|
attention weight of a token to itself is located at index ``x + attention_window / 2`` and the |
|
``attention_window / 2`` preceding (succeeding) values are the attention weights to the ``attention_window |
|
/ 2`` preceding (succeeding) tokens. If the attention window contains a token with global attention, the |
|
attention weight at the corresponding index is set to 0; the value should be accessed from the first ``x`` |
|
attention weights. If a token has global attention, the attention weights to all other tokens in |
|
:obj:`attentions` is set to 0, the values should be accessed from :obj:`global_attentions`. |
|
global_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): |
|
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, |
|
sequence_length, x)`, where ``x`` is the number of tokens with global attention mask. |
|
|
|
Global attentions weights after the attention softmax, used to compute the weighted average in the |
|
self-attention heads. Those are the attention weights from every token with global attention to every token |
|
in the sequence. |
|
""" |
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
logits: torch.FloatTensor = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
global_attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
@dataclass |
|
class LongformerTokenClassifierOutput(ModelOutput): |
|
""" |
|
Base class for outputs of token classification models. |
|
|
|
Args: |
|
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when ``labels`` is provided) : |
|
Classification loss. |
|
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.num_labels)`): |
|
Classification scores (before SoftMax). |
|
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): |
|
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) |
|
of shape :obj:`(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs. |
|
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): |
|
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, |
|
sequence_length, x + attention_window + 1)`, where ``x`` is the number of tokens with global attention |
|
mask. |
|
|
|
Local attentions weights after the attention softmax, used to compute the weighted average in the |
|
self-attention heads. Those are the attention weights from every token in the sequence to every token with |
|
global attention (first ``x`` values) and to every token in the attention window (remaining |
|
``attention_window + 1`` values). Note that the first ``x`` values refer to tokens with fixed positions in |
|
the text, but the remaining ``attention_window + 1`` values refer to tokens with relative positions: the |
|
attention weight of a token to itself is located at index ``x + attention_window / 2`` and the |
|
``attention_window / 2`` preceding (succeeding) values are the attention weights to the ``attention_window |
|
/ 2`` preceding (succeeding) tokens. If the attention window contains a token with global attention, the |
|
attention weight at the corresponding index is set to 0; the value should be accessed from the first ``x`` |
|
attention weights. If a token has global attention, the attention weights to all other tokens in |
|
:obj:`attentions` is set to 0, the values should be accessed from :obj:`global_attentions`. |
|
global_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): |
|
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, |
|
sequence_length, x)`, where ``x`` is the number of tokens with global attention mask. |
|
|
|
Global attentions weights after the attention softmax, used to compute the weighted average in the |
|
self-attention heads. Those are the attention weights from every token with global attention to every token |
|
in the sequence. |
|
""" |
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
logits: torch.FloatTensor = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
global_attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
def _get_question_end_index(input_ids, sep_token_id): |
|
""" |
|
Computes the index of the first occurrence of `sep_token_id`. |
|
""" |
|
|
|
sep_token_indices = (input_ids == sep_token_id).nonzero() |
|
batch_size = input_ids.shape[0] |
|
|
|
assert sep_token_indices.shape[1] == 2, "`input_ids` should have two dimensions" |
|
assert ( |
|
sep_token_indices.shape[0] == 3 * batch_size |
|
), f"There should be exactly three separator tokens: {sep_token_id} in every sample for questions answering. You might also consider to set `global_attention_mask` manually in the forward function to avoid this error." |
|
return sep_token_indices.view(batch_size, 3, 2)[:, 0, 1] |
|
|
|
|
|
def _compute_global_attention_mask(input_ids, sep_token_id, before_sep_token=True): |
|
""" |
|
Computes global attention mask by putting attention on all tokens before `sep_token_id` if `before_sep_token is |
|
True` else after `sep_token_id`. |
|
""" |
|
question_end_index = _get_question_end_index(input_ids, sep_token_id) |
|
question_end_index = question_end_index.unsqueeze( |
|
dim=1) |
|
|
|
attention_mask = torch.arange(input_ids.shape[1], device=input_ids.device) |
|
if before_sep_token is True: |
|
attention_mask = (attention_mask.expand_as(input_ids) |
|
< question_end_index).to(torch.uint8) |
|
else: |
|
|
|
attention_mask = (attention_mask.expand_as(input_ids) > (question_end_index + 1)).to(torch.uint8) * ( |
|
attention_mask.expand_as(input_ids) < input_ids.shape[-1] |
|
).to(torch.uint8) |
|
|
|
return attention_mask |
|
|
|
|
|
def create_position_ids_from_input_ids(input_ids, padding_idx): |
|
""" |
|
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols |
|
are ignored. This is modified from fairseq's `utils.make_positions`. |
|
|
|
Args: |
|
x: torch.Tensor x: |
|
|
|
Returns: torch.Tensor |
|
""" |
|
|
|
mask = input_ids.ne(padding_idx).int() |
|
incremental_indices = torch.cumsum(mask, dim=1).type_as(mask) * mask |
|
return incremental_indices.long() + padding_idx |
|
|
|
|
|
class LongformerEmbeddings(nn.Module): |
|
""" |
|
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. |
|
""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.word_embeddings = nn.Embedding( |
|
config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) |
|
self.position_embeddings = nn.Embedding( |
|
config.max_position_embeddings, config.hidden_size) |
|
self.token_type_embeddings = nn.Embedding( |
|
config.type_vocab_size, config.hidden_size) |
|
|
|
|
|
|
|
self.LayerNorm = nn.LayerNorm( |
|
config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if input_ids is not None: |
|
input_shape = input_ids.size() |
|
else: |
|
input_shape = inputs_embeds.size()[:-1] |
|
|
|
seq_length = input_shape[1] |
|
|
|
|
|
|
|
|
|
if token_type_ids is None: |
|
token_type_ids = torch.zeros( |
|
input_shape, dtype=torch.long, device=self.position_ids.device) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.word_embeddings(input_ids) |
|
|
|
|
|
|
|
|
|
token_type_embeddings = self.token_type_embeddings(token_type_ids) |
|
|
|
embeddings = inputs_embeds + token_type_embeddings |
|
embeddings = self.LayerNorm(embeddings) |
|
embeddings = self.dropout(embeddings) |
|
return embeddings |
|
|
|
def create_position_ids_from_inputs_embeds(self, inputs_embeds): |
|
""" |
|
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. |
|
|
|
Args: |
|
inputs_embeds: torch.Tensor inputs_embeds: |
|
|
|
Returns: torch.Tensor |
|
""" |
|
input_shape = inputs_embeds.size()[:-1] |
|
sequence_length = input_shape[1] |
|
|
|
position_ids = torch.arange( |
|
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device |
|
) |
|
return position_ids.unsqueeze(0).expand(input_shape) |
|
|
|
|
|
class RoPEmbedding(nn.Module): |
|
def __init__(self, d_model): |
|
super(RoPEmbedding, self).__init__() |
|
self.d_model = d_model |
|
div_term = torch.exp(torch.arange( |
|
0, d_model, 2).float() * (-math.log(10000.0) / d_model)) |
|
self.register_buffer('div_term', div_term) |
|
|
|
def forward(self, x, seq_dim=0): |
|
x = x |
|
t = torch.arange(x.size(seq_dim), device=x.device).type_as( |
|
self.div_term) |
|
sinusoid_inp = torch.outer(t, self.div_term) |
|
sin, cos = sinusoid_inp.sin(), sinusoid_inp.cos() |
|
o_shape = (sin.size(0), 1, 1, sin.size(1)) |
|
sin, cos = sin.view(*o_shape), cos.view(*o_shape) |
|
sin = torch.repeat_interleave(sin, 2, dim=-1) |
|
cos = torch.repeat_interleave(cos, 2, dim=-1) |
|
x2 = torch.stack([-x[..., 1::2], x[..., ::2]], dim=-1).reshape_as(x) |
|
x = cos * x + sin * x2 |
|
return x |
|
|
|
|
|
class LongformerSelfAttention(nn.Module): |
|
def __init__(self, config, layer_id): |
|
super().__init__() |
|
if config.hidden_size % config.num_attention_heads != 0: |
|
raise ValueError( |
|
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " |
|
f"heads ({config.num_attention_heads})" |
|
) |
|
self.config = config |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = int(config.hidden_size / config.num_attention_heads) |
|
self.embed_dim = config.hidden_size |
|
|
|
self.query = nn.Linear(config.hidden_size, self.embed_dim) |
|
self.key = nn.Linear(config.hidden_size, self.embed_dim) |
|
self.value = nn.Linear(config.hidden_size, self.embed_dim) |
|
|
|
|
|
|
|
|
|
|
|
|
|
self.dropout = config.attention_probs_dropout_prob |
|
|
|
self.layer_id = layer_id |
|
attention_window = config.attention_window[self.layer_id] |
|
assert ( |
|
attention_window % 2 == 0 |
|
), f"`attention_window` for layer {self.layer_id} has to be an even value. Given {attention_window}" |
|
assert ( |
|
attention_window > 0 |
|
), f"`attention_window` for layer {self.layer_id} has to be positive. Given {attention_window}" |
|
|
|
self.one_sided_attn_window_size = attention_window // 2 |
|
self.rope_emb = RoPEmbedding(self.head_dim) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
layer_head_mask=None, |
|
is_index_masked=None, |
|
is_index_global_attn=None, |
|
is_global_attn=None, |
|
output_attentions=False, |
|
): |
|
""" |
|
:class:`LongformerSelfAttention` expects `len(hidden_states)` to be multiple of `attention_window`. Padding to |
|
`attention_window` happens in :meth:`LongformerModel.forward` to avoid redoing the padding on each layer. |
|
|
|
The `attention_mask` is changed in :meth:`LongformerModel.forward` from 0, 1, 2 to: |
|
|
|
* -10000: no attention |
|
* 0: local attention |
|
* +10000: global attention |
|
""" |
|
|
|
|
|
if not self.config.use_sparse_attention: |
|
hidden_states = hidden_states.transpose(0, 1) |
|
|
|
query_vectors = self.query(hidden_states) |
|
key_vectors = self.key(hidden_states) |
|
value_vectors = self.value(hidden_states) |
|
|
|
seq_len, batch_size, embed_dim = hidden_states.size() |
|
assert ( |
|
embed_dim == self.embed_dim |
|
), f"hidden_states should have embed_dim = {self.embed_dim}, but has {embed_dim}" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
query_vectors = query_vectors.view( |
|
seq_len, batch_size, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_vectors = key_vectors.view( |
|
seq_len, batch_size, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
|
query_vectors = self.rope_emb(query_vectors) |
|
key_vectors = self.rope_emb(key_vectors) |
|
|
|
query_vectors = query_vectors.transpose(0, 2) |
|
key_vectors = key_vectors.transpose(0, 2).transpose(2, 3) |
|
|
|
|
|
|
|
query_vectors /= math.sqrt(self.head_dim) |
|
|
|
attention_mask = self.get_extended_attention_mask( |
|
attention_mask, attention_mask.shape, attention_mask.device) |
|
attn_scores = torch.matmul( |
|
query_vectors, key_vectors)+attention_mask |
|
|
|
attn_scores = torch.nn.functional.softmax(attn_scores, dim=-1) |
|
|
|
value_vectors = value_vectors.view( |
|
seq_len, batch_size, self.num_heads, self.head_dim).transpose(0, 1).transpose(1, 2) |
|
outputs = torch.matmul(attn_scores, value_vectors).transpose( |
|
1, 2).contiguous().view(batch_size, seq_len, self.num_heads*self.head_dim) |
|
|
|
|
|
outputs = (outputs,) |
|
return outputs+(attn_scores,) |
|
|
|
|
|
|
|
|
|
|
|
hidden_states = hidden_states.transpose(0, 1) |
|
|
|
|
|
query_vectors = self.query(hidden_states) |
|
key_vectors = self.key(hidden_states) |
|
value_vectors = self.value(hidden_states) |
|
|
|
seq_len, batch_size, embed_dim = hidden_states.size() |
|
assert ( |
|
embed_dim == self.embed_dim |
|
), f"hidden_states should have embed_dim = {self.embed_dim}, but has {embed_dim}" |
|
|
|
|
|
|
|
|
|
|
|
|
|
query_vectors = query_vectors.view( |
|
seq_len, batch_size, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_vectors = key_vectors.view( |
|
seq_len, batch_size, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
|
query_vectors = self.rope_emb(query_vectors) |
|
key_vectors = self.rope_emb(key_vectors) |
|
|
|
query_vectors = query_vectors.transpose(1, 2).transpose(0, 1) |
|
key_vectors = key_vectors.transpose(1, 2).transpose(0, 1) |
|
|
|
query_vectors /= math.sqrt(self.head_dim) |
|
|
|
attn_scores = self._sliding_chunks_query_key_matmul( |
|
query_vectors, key_vectors, self.one_sided_attn_window_size |
|
) |
|
|
|
|
|
remove_from_windowed_attention_mask = ( |
|
attention_mask != 0)[:, :, None, None] |
|
|
|
|
|
float_mask = remove_from_windowed_attention_mask.type_as(query_vectors).masked_fill( |
|
remove_from_windowed_attention_mask, -10000.0 |
|
) |
|
|
|
diagonal_mask = self._sliding_chunks_query_key_matmul( |
|
float_mask.new_ones(size=float_mask.size() |
|
), float_mask, self.one_sided_attn_window_size |
|
) |
|
|
|
|
|
attn_scores += diagonal_mask |
|
|
|
assert list(attn_scores.size()) == [ |
|
batch_size, |
|
seq_len, |
|
self.num_heads, |
|
self.one_sided_attn_window_size * 2 + 1, |
|
], f"local_attn_probs should be of size ({batch_size}, {seq_len}, {self.num_heads}, {self.one_sided_attn_window_size * 2 + 1}), but is of size {attn_scores.size()}" |
|
|
|
|
|
if is_global_attn: |
|
|
|
( |
|
max_num_global_attn_indices, |
|
is_index_global_attn_nonzero, |
|
is_local_index_global_attn_nonzero, |
|
is_local_index_no_global_attn_nonzero, |
|
) = self._get_global_attn_indices(is_index_global_attn) |
|
|
|
|
|
global_key_attn_scores = self._concat_with_global_key_attn_probs( |
|
query_vectors=query_vectors, |
|
key_vectors=key_vectors, |
|
max_num_global_attn_indices=max_num_global_attn_indices, |
|
is_index_global_attn_nonzero=is_index_global_attn_nonzero, |
|
is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero, |
|
is_local_index_no_global_attn_nonzero=is_local_index_no_global_attn_nonzero, |
|
) |
|
|
|
|
|
attn_scores = torch.cat( |
|
(global_key_attn_scores, attn_scores), dim=-1) |
|
|
|
|
|
del global_key_attn_scores |
|
|
|
attn_probs = nn.functional.softmax( |
|
attn_scores, dim=-1, dtype=torch.float32 |
|
) |
|
|
|
if layer_head_mask is not None: |
|
assert layer_head_mask.size() == ( |
|
self.num_heads, |
|
), f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}" |
|
attn_probs = layer_head_mask.view(1, 1, -1, 1) * attn_probs |
|
|
|
|
|
attn_probs = torch.masked_fill( |
|
attn_probs, is_index_masked[:, :, None, None], 0.0) |
|
attn_probs = attn_probs.type_as(attn_scores) |
|
|
|
|
|
del attn_scores |
|
|
|
|
|
attn_probs = nn.functional.dropout( |
|
attn_probs, p=self.dropout, training=self.training) |
|
|
|
value_vectors = value_vectors.view( |
|
seq_len, batch_size, self.num_heads, self.head_dim).transpose(0, 1) |
|
|
|
|
|
if is_global_attn: |
|
|
|
attn_output = self._compute_attn_output_with_global_indices( |
|
value_vectors=value_vectors, |
|
attn_probs=attn_probs, |
|
max_num_global_attn_indices=max_num_global_attn_indices, |
|
is_index_global_attn_nonzero=is_index_global_attn_nonzero, |
|
is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero, |
|
) |
|
else: |
|
|
|
attn_output = self._sliding_chunks_matmul_attn_probs_value( |
|
attn_probs, value_vectors, self.one_sided_attn_window_size |
|
) |
|
|
|
assert attn_output.size() == (batch_size, seq_len, self.num_heads, |
|
self.head_dim), "Unexpected size" |
|
attn_output = attn_output.transpose(0, 1).reshape( |
|
seq_len, batch_size, embed_dim).contiguous() |
|
|
|
|
|
|
|
if is_global_attn: |
|
global_attn_output, global_attn_probs = self._compute_global_attn_output_from_hidden( |
|
global_query_vectors=query_vectors, |
|
global_key_vectors=key_vectors, |
|
global_value_vectors=value_vectors, |
|
max_num_global_attn_indices=max_num_global_attn_indices, |
|
layer_head_mask=layer_head_mask, |
|
is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero, |
|
is_index_global_attn_nonzero=is_index_global_attn_nonzero, |
|
is_local_index_no_global_attn_nonzero=is_local_index_no_global_attn_nonzero, |
|
is_index_masked=is_index_masked, |
|
) |
|
|
|
|
|
nonzero_global_attn_output = global_attn_output[ |
|
is_local_index_global_attn_nonzero[0], :, is_local_index_global_attn_nonzero[1] |
|
] |
|
|
|
|
|
attn_output[is_index_global_attn_nonzero[::-1]] = nonzero_global_attn_output.view( |
|
len(is_local_index_global_attn_nonzero[0]), -1 |
|
) |
|
|
|
|
|
|
|
attn_probs[is_index_global_attn_nonzero] = 0 |
|
|
|
outputs = (attn_output.transpose(0, 1),) |
|
|
|
if output_attentions: |
|
outputs += (attn_probs,) |
|
|
|
return outputs + (global_attn_probs,) if (is_global_attn and output_attentions) else outputs |
|
|
|
@staticmethod |
|
def _pad_and_transpose_last_two_dims(hidden_states_padded, padding): |
|
"""pads rows and then flips rows and columns""" |
|
hidden_states_padded = nn.functional.pad( |
|
hidden_states_padded, padding |
|
) |
|
hidden_states_padded = hidden_states_padded.view( |
|
*hidden_states_padded.size()[:-2], hidden_states_padded.size(-1), hidden_states_padded.size(-2) |
|
) |
|
return hidden_states_padded |
|
|
|
@staticmethod |
|
def _pad_and_diagonalize(chunked_hidden_states): |
|
""" |
|
shift every row 1 step right, converting columns into diagonals. |
|
|
|
Example:: |
|
|
|
chunked_hidden_states: [ 0.4983, 2.6918, -0.0071, 1.0492, |
|
-1.8348, 0.7672, 0.2986, 0.0285, |
|
-0.7584, 0.4206, -0.0405, 0.1599, |
|
2.0514, -1.1600, 0.5372, 0.2629 ] |
|
window_overlap = num_rows = 4 |
|
(pad & diagonalize) => |
|
[ 0.4983, 2.6918, -0.0071, 1.0492, 0.0000, 0.0000, 0.0000 |
|
0.0000, -1.8348, 0.7672, 0.2986, 0.0285, 0.0000, 0.0000 |
|
0.0000, 0.0000, -0.7584, 0.4206, -0.0405, 0.1599, 0.0000 |
|
0.0000, 0.0000, 0.0000, 2.0514, -1.1600, 0.5372, 0.2629 ] |
|
""" |
|
total_num_heads, num_chunks, window_overlap, hidden_dim = chunked_hidden_states.size() |
|
chunked_hidden_states = nn.functional.pad( |
|
chunked_hidden_states, (0, window_overlap + 1) |
|
) |
|
chunked_hidden_states = chunked_hidden_states.view( |
|
total_num_heads, num_chunks, -1 |
|
) |
|
chunked_hidden_states = chunked_hidden_states[ |
|
:, :, :-window_overlap |
|
] |
|
chunked_hidden_states = chunked_hidden_states.view( |
|
total_num_heads, num_chunks, window_overlap, window_overlap + hidden_dim |
|
) |
|
chunked_hidden_states = chunked_hidden_states[:, :, :, :-1] |
|
return chunked_hidden_states |
|
|
|
@staticmethod |
|
def _chunk(hidden_states, window_overlap): |
|
"""convert into overlapping chunks. Chunk size = 2w, overlap size = w""" |
|
|
|
|
|
hidden_states = hidden_states.view( |
|
hidden_states.size(0), |
|
hidden_states.size(1) // (window_overlap * 2), |
|
window_overlap * 2, |
|
hidden_states.size(2), |
|
) |
|
|
|
|
|
chunk_size = list(hidden_states.size()) |
|
chunk_size[1] = chunk_size[1] * 2 - 1 |
|
|
|
chunk_stride = list(hidden_states.stride()) |
|
chunk_stride[1] = chunk_stride[1] // 2 |
|
return hidden_states.as_strided(size=chunk_size, stride=chunk_stride) |
|
|
|
@staticmethod |
|
def _mask_invalid_locations(input_tensor, affected_seq_len) -> torch.Tensor: |
|
beginning_mask_2d = input_tensor.new_ones( |
|
affected_seq_len, affected_seq_len + 1).tril().flip(dims=[0]) |
|
beginning_mask = beginning_mask_2d[None, :, None, :] |
|
ending_mask = beginning_mask.flip(dims=(1, 3)) |
|
beginning_input = input_tensor[:, |
|
:affected_seq_len, :, : affected_seq_len + 1] |
|
beginning_mask = beginning_mask.expand(beginning_input.size()) |
|
|
|
beginning_input.masked_fill_(beginning_mask == 1, -float("inf")) |
|
ending_input = input_tensor[:, - |
|
affected_seq_len:, :, -(affected_seq_len + 1):] |
|
ending_mask = ending_mask.expand(ending_input.size()) |
|
|
|
ending_input.masked_fill_(ending_mask == 1, -float("inf")) |
|
|
|
def _sliding_chunks_query_key_matmul(self, query: torch.Tensor, key: torch.Tensor, window_overlap: int): |
|
""" |
|
Matrix multiplication of query and key tensors using with a sliding window attention pattern. This |
|
implementation splits the input into overlapping chunks of size 2w (e.g. 512 for pretrained Longformer) with an |
|
overlap of size window_overlap |
|
""" |
|
batch_size, seq_len, num_heads, head_dim = query.size() |
|
assert ( |
|
seq_len % (window_overlap * 2) == 0 |
|
), f"Sequence length should be multiple of {window_overlap * 2}. Given {seq_len}" |
|
assert query.size() == key.size() |
|
|
|
chunks_count = seq_len // window_overlap - 1 |
|
|
|
|
|
query = query.transpose(1, 2).reshape( |
|
batch_size * num_heads, seq_len, head_dim) |
|
key = key.transpose(1, 2).reshape( |
|
batch_size * num_heads, seq_len, head_dim) |
|
|
|
query = self._chunk(query, window_overlap) |
|
key = self._chunk(key, window_overlap) |
|
|
|
|
|
|
|
|
|
|
|
diagonal_chunked_attention_scores = torch.einsum( |
|
"bcxd,bcyd->bcxy", (query, key)) |
|
|
|
|
|
diagonal_chunked_attention_scores = self._pad_and_transpose_last_two_dims( |
|
diagonal_chunked_attention_scores, padding=(0, 0, 0, 1) |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
diagonal_attention_scores = diagonal_chunked_attention_scores.new_empty( |
|
(batch_size * num_heads, chunks_count + 1, |
|
window_overlap, window_overlap * 2 + 1) |
|
) |
|
|
|
|
|
|
|
diagonal_attention_scores[:, :-1, :, window_overlap:] = diagonal_chunked_attention_scores[ |
|
:, :, :window_overlap, : window_overlap + 1 |
|
] |
|
diagonal_attention_scores[:, -1, :, window_overlap:] = diagonal_chunked_attention_scores[ |
|
:, -1, window_overlap:, : window_overlap + 1 |
|
] |
|
|
|
diagonal_attention_scores[:, 1:, :, :window_overlap] = diagonal_chunked_attention_scores[ |
|
:, :, -(window_overlap + 1): -1, window_overlap + 1: |
|
] |
|
|
|
diagonal_attention_scores[:, 0, 1:window_overlap, 1:window_overlap] = diagonal_chunked_attention_scores[ |
|
:, 0, : window_overlap - 1, 1 - window_overlap: |
|
] |
|
|
|
|
|
diagonal_attention_scores = diagonal_attention_scores.view( |
|
batch_size, num_heads, seq_len, 2 * window_overlap + 1 |
|
).transpose(2, 1) |
|
|
|
self._mask_invalid_locations(diagonal_attention_scores, window_overlap) |
|
return diagonal_attention_scores |
|
|
|
def _sliding_chunks_matmul_attn_probs_value( |
|
self, attn_probs: torch.Tensor, value: torch.Tensor, window_overlap: int |
|
): |
|
""" |
|
Same as _sliding_chunks_query_key_matmul but for attn_probs and value tensors. Returned tensor will be of the |
|
same shape as `attn_probs` |
|
""" |
|
batch_size, seq_len, num_heads, head_dim = value.size() |
|
|
|
assert seq_len % (window_overlap * 2) == 0 |
|
assert attn_probs.size()[:3] == value.size()[:3] |
|
assert attn_probs.size(3) == 2 * window_overlap + 1 |
|
chunks_count = seq_len // window_overlap - 1 |
|
|
|
|
|
chunked_attn_probs = attn_probs.transpose(1, 2).reshape( |
|
batch_size * num_heads, seq_len // window_overlap, window_overlap, 2 * window_overlap + 1 |
|
) |
|
|
|
|
|
value = value.transpose(1, 2).reshape( |
|
batch_size * num_heads, seq_len, head_dim) |
|
|
|
|
|
padded_value = nn.functional.pad( |
|
value, (0, 0, window_overlap, window_overlap), value=-1) |
|
|
|
|
|
chunked_value_size = (batch_size * num_heads, |
|
chunks_count + 1, 3 * window_overlap, head_dim) |
|
chunked_value_stride = padded_value.stride() |
|
chunked_value_stride = ( |
|
chunked_value_stride[0], |
|
window_overlap * chunked_value_stride[1], |
|
chunked_value_stride[1], |
|
chunked_value_stride[2], |
|
) |
|
chunked_value = padded_value.as_strided( |
|
size=chunked_value_size, stride=chunked_value_stride) |
|
|
|
chunked_attn_probs = self._pad_and_diagonalize(chunked_attn_probs) |
|
|
|
context = torch.einsum( |
|
"bcwd,bcdh->bcwh", (chunked_attn_probs, chunked_value)) |
|
return context.view(batch_size, num_heads, seq_len, head_dim).transpose(1, 2) |
|
|
|
@staticmethod |
|
def _get_global_attn_indices(is_index_global_attn): |
|
"""compute global attn indices required throughout forward pass""" |
|
|
|
num_global_attn_indices = is_index_global_attn.long().sum(dim=1) |
|
|
|
|
|
max_num_global_attn_indices = num_global_attn_indices.max() |
|
|
|
|
|
is_index_global_attn_nonzero = is_index_global_attn.nonzero( |
|
as_tuple=True) |
|
|
|
|
|
is_local_index_global_attn = torch.arange( |
|
max_num_global_attn_indices, device=is_index_global_attn.device |
|
) < num_global_attn_indices.unsqueeze(dim=-1) |
|
|
|
|
|
is_local_index_global_attn_nonzero = is_local_index_global_attn.nonzero( |
|
as_tuple=True) |
|
|
|
|
|
is_local_index_no_global_attn_nonzero = ( |
|
is_local_index_global_attn == 0).nonzero(as_tuple=True) |
|
return ( |
|
max_num_global_attn_indices, |
|
is_index_global_attn_nonzero, |
|
is_local_index_global_attn_nonzero, |
|
is_local_index_no_global_attn_nonzero, |
|
) |
|
|
|
def _concat_with_global_key_attn_probs( |
|
self, |
|
key_vectors, |
|
query_vectors, |
|
max_num_global_attn_indices, |
|
is_index_global_attn_nonzero, |
|
is_local_index_global_attn_nonzero, |
|
is_local_index_no_global_attn_nonzero, |
|
): |
|
batch_size = key_vectors.shape[0] |
|
|
|
|
|
key_vectors_only_global = key_vectors.new_zeros( |
|
batch_size, max_num_global_attn_indices, self.num_heads, self.head_dim |
|
) |
|
|
|
key_vectors_only_global[is_local_index_global_attn_nonzero] = key_vectors[is_index_global_attn_nonzero] |
|
|
|
|
|
attn_probs_from_global_key = torch.einsum( |
|
"blhd,bshd->blhs", (query_vectors, key_vectors_only_global)) |
|
|
|
attn_probs_from_global_key[ |
|
is_local_index_no_global_attn_nonzero[0], :, :, is_local_index_no_global_attn_nonzero[1] |
|
] = -10000.0 |
|
|
|
return attn_probs_from_global_key |
|
|
|
def _compute_attn_output_with_global_indices( |
|
self, |
|
value_vectors, |
|
attn_probs, |
|
max_num_global_attn_indices, |
|
is_index_global_attn_nonzero, |
|
is_local_index_global_attn_nonzero, |
|
): |
|
batch_size = attn_probs.shape[0] |
|
|
|
|
|
attn_probs_only_global = attn_probs.narrow( |
|
-1, 0, max_num_global_attn_indices) |
|
|
|
value_vectors_only_global = value_vectors.new_zeros( |
|
batch_size, max_num_global_attn_indices, self.num_heads, self.head_dim |
|
) |
|
value_vectors_only_global[is_local_index_global_attn_nonzero] = value_vectors[is_index_global_attn_nonzero] |
|
|
|
|
|
|
|
|
|
attn_output_only_global = torch.matmul( |
|
attn_probs_only_global.transpose( |
|
1, 2), value_vectors_only_global.transpose(1, 2) |
|
).transpose(1, 2) |
|
|
|
|
|
attn_probs_without_global = attn_probs.narrow( |
|
-1, max_num_global_attn_indices, attn_probs.size(-1) - max_num_global_attn_indices |
|
).contiguous() |
|
|
|
|
|
attn_output_without_global = self._sliding_chunks_matmul_attn_probs_value( |
|
attn_probs_without_global, value_vectors, self.one_sided_attn_window_size |
|
) |
|
return attn_output_only_global + attn_output_without_global |
|
|
|
def _compute_global_attn_output_from_hidden( |
|
self, |
|
global_query_vectors, |
|
global_key_vectors, |
|
global_value_vectors, |
|
max_num_global_attn_indices, |
|
layer_head_mask, |
|
is_local_index_global_attn_nonzero, |
|
is_index_global_attn_nonzero, |
|
is_local_index_no_global_attn_nonzero, |
|
is_index_masked, |
|
): |
|
|
|
global_query_vectors = global_query_vectors.transpose(0, 1) |
|
seq_len, batch_size, _, _ = global_query_vectors.shape |
|
global_query_vectors_only_global = global_query_vectors.new_zeros( |
|
max_num_global_attn_indices, batch_size, self.num_heads, self.head_dim) |
|
global_query_vectors_only_global[is_local_index_global_attn_nonzero[::-1]] = global_query_vectors[ |
|
is_index_global_attn_nonzero[::-1] |
|
] |
|
|
|
seq_len_q, batch_size_q, _, _ = global_query_vectors_only_global.shape |
|
|
|
|
|
|
|
global_query_vectors_only_global = global_query_vectors_only_global.view( |
|
seq_len_q, batch_size_q, self.num_heads, self.head_dim) |
|
global_key_vectors = global_key_vectors.transpose(0, 1) |
|
global_value_vectors = global_value_vectors.transpose(0, 1) |
|
|
|
|
|
global_query_vectors_only_global = ( |
|
global_query_vectors_only_global.contiguous() |
|
.view(max_num_global_attn_indices, batch_size * self.num_heads, self.head_dim) |
|
.transpose(0, 1) |
|
) |
|
global_key_vectors = ( |
|
global_key_vectors.contiguous().view(-1, batch_size * self.num_heads, |
|
self.head_dim).transpose(0, 1) |
|
) |
|
global_value_vectors = ( |
|
global_value_vectors.contiguous().view(-1, batch_size * self.num_heads, |
|
self.head_dim).transpose(0, 1) |
|
) |
|
|
|
|
|
|
|
global_attn_scores = torch.bmm( |
|
global_query_vectors_only_global, global_key_vectors.transpose(1, 2)) |
|
|
|
assert list(global_attn_scores.size()) == [ |
|
batch_size * self.num_heads, |
|
max_num_global_attn_indices, |
|
seq_len, |
|
], f"global_attn_scores have the wrong size. Size should be {(batch_size * self.num_heads, max_num_global_attn_indices, seq_len)}, but is {global_attn_scores.size()}." |
|
|
|
global_attn_scores = global_attn_scores.view( |
|
batch_size, self.num_heads, max_num_global_attn_indices, seq_len) |
|
|
|
global_attn_scores[ |
|
is_local_index_no_global_attn_nonzero[0], :, is_local_index_no_global_attn_nonzero[1], : |
|
] = -10000.0 |
|
|
|
global_attn_scores = global_attn_scores.masked_fill( |
|
is_index_masked[:, None, None, :], |
|
-10000.0, |
|
) |
|
|
|
global_attn_scores = global_attn_scores.view( |
|
batch_size * self.num_heads, max_num_global_attn_indices, seq_len) |
|
|
|
|
|
global_attn_probs_float = nn.functional.softmax( |
|
global_attn_scores, dim=-1, dtype=torch.float32 |
|
) |
|
|
|
|
|
if layer_head_mask is not None: |
|
assert layer_head_mask.size() == ( |
|
self.num_heads, |
|
), f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}" |
|
global_attn_probs_float = layer_head_mask.view(1, -1, 1, 1) * global_attn_probs_float.view( |
|
batch_size, self.num_heads, max_num_global_attn_indices, seq_len |
|
) |
|
global_attn_probs_float = global_attn_probs_float.view( |
|
batch_size * self.num_heads, max_num_global_attn_indices, seq_len |
|
) |
|
|
|
global_attn_probs = nn.functional.dropout( |
|
global_attn_probs_float.type_as(global_attn_scores), p=self.dropout, training=self.training |
|
) |
|
|
|
|
|
global_attn_output = torch.bmm(global_attn_probs, global_value_vectors) |
|
|
|
assert list(global_attn_output.size()) == [ |
|
batch_size * self.num_heads, |
|
max_num_global_attn_indices, |
|
self.head_dim, |
|
], f"global_attn_output tensor has the wrong size. Size should be {(batch_size * self.num_heads, max_num_global_attn_indices, self.head_dim)}, but is {global_attn_output.size()}." |
|
|
|
global_attn_probs = global_attn_probs.view( |
|
batch_size, self.num_heads, max_num_global_attn_indices, seq_len) |
|
global_attn_output = global_attn_output.view( |
|
batch_size, self.num_heads, max_num_global_attn_indices, self.head_dim |
|
) |
|
return global_attn_output, global_attn_probs |
|
|
|
def get_extended_attention_mask(self, attention_mask, input_shape, device): |
|
""" |
|
Makes broadcastable attention and causal masks so that future and masked tokens are ignored. |
|
|
|
Arguments: |
|
attention_mask (:obj:`torch.Tensor`): |
|
Mask with ones indicating tokens to attend to, zeros for tokens to ignore. |
|
input_shape (:obj:`Tuple[int]`): |
|
The shape of the input to the model. |
|
device: (:obj:`torch.device`): |
|
The device of the input to the model. |
|
|
|
Returns: |
|
:obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`. |
|
""" |
|
|
|
|
|
|
|
ones = torch.ones_like(attention_mask) |
|
zero = torch.zeros_like(attention_mask) |
|
attention_mask = torch.where(attention_mask < 0, zero, ones) |
|
|
|
if attention_mask.dim() == 3: |
|
extended_attention_mask = attention_mask[:, None, :, :] |
|
elif attention_mask.dim() == 2: |
|
extended_attention_mask = attention_mask[:, None, None, :] |
|
else: |
|
raise ValueError( |
|
f"Wrong shape for input_ids (shape {input_shape}) or attention_mask (shape {attention_mask.shape})" |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 |
|
return extended_attention_mask |
|
|
|
|
|
|
|
class LongformerSelfOutput(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.LayerNorm = nn.LayerNorm( |
|
config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states, input_tensor): |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states + input_tensor) |
|
return hidden_states |
|
|
|
|
|
class LongformerAttention(nn.Module): |
|
def __init__(self, config, layer_id=0): |
|
super().__init__() |
|
self.self = LongformerSelfAttention(config, layer_id) |
|
self.output = LongformerSelfOutput(config) |
|
self.pruned_heads = set() |
|
|
|
def prune_heads(self, heads): |
|
if len(heads) == 0: |
|
return |
|
heads, index = find_pruneable_heads_and_indices( |
|
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads |
|
) |
|
|
|
|
|
self.self.query = prune_linear_layer(self.self.query, index) |
|
self.self.key = prune_linear_layer(self.self.key, index) |
|
self.self.value = prune_linear_layer(self.self.value, index) |
|
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) |
|
|
|
|
|
self.self.num_attention_heads = self.self.num_attention_heads - \ |
|
len(heads) |
|
self.self.all_head_size = self.self.attention_head_size * \ |
|
self.self.num_attention_heads |
|
self.pruned_heads = self.pruned_heads.union(heads) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
layer_head_mask=None, |
|
is_index_masked=None, |
|
is_index_global_attn=None, |
|
is_global_attn=None, |
|
output_attentions=False, |
|
): |
|
self_outputs = self.self( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
layer_head_mask=layer_head_mask, |
|
is_index_masked=is_index_masked, |
|
is_index_global_attn=is_index_global_attn, |
|
is_global_attn=is_global_attn, |
|
output_attentions=output_attentions, |
|
) |
|
attn_output = self.output(self_outputs[0], hidden_states) |
|
outputs = (attn_output,) + self_outputs[1:] |
|
return outputs |
|
|
|
|
|
|
|
class LongformerIntermediate(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) |
|
if isinstance(config.hidden_act, str): |
|
self.intermediate_act_fn = ACT2FN[config.hidden_act] |
|
else: |
|
self.intermediate_act_fn = config.hidden_act |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.intermediate_act_fn(hidden_states) |
|
return hidden_states |
|
|
|
|
|
|
|
class LongformerOutput(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) |
|
self.LayerNorm = nn.LayerNorm( |
|
config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states, input_tensor): |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states + input_tensor) |
|
return hidden_states |
|
|
|
|
|
class LongformerLayer(nn.Module): |
|
def __init__(self, config, layer_id=0): |
|
super().__init__() |
|
self.attention = LongformerAttention(config, layer_id) |
|
self.intermediate = LongformerIntermediate(config) |
|
self.output = LongformerOutput(config) |
|
self.chunk_size_feed_forward = config.chunk_size_feed_forward |
|
self.seq_len_dim = 1 |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
layer_head_mask=None, |
|
is_index_masked=None, |
|
is_index_global_attn=None, |
|
is_global_attn=None, |
|
output_attentions=False, |
|
): |
|
self_attn_outputs = self.attention( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
layer_head_mask=layer_head_mask, |
|
is_index_masked=is_index_masked, |
|
is_index_global_attn=is_index_global_attn, |
|
is_global_attn=is_global_attn, |
|
output_attentions=output_attentions, |
|
) |
|
attn_output = self_attn_outputs[0] |
|
outputs = self_attn_outputs[1:] |
|
|
|
layer_output = apply_chunking_to_forward( |
|
self.ff_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attn_output |
|
) |
|
outputs = (layer_output,) + outputs |
|
return outputs |
|
|
|
def ff_chunk(self, attn_output): |
|
intermediate_output = self.intermediate(attn_output) |
|
layer_output = self.output(intermediate_output, attn_output) |
|
return layer_output |
|
|
|
|
|
class LongformerEncoder(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.layer = nn.ModuleList( |
|
[LongformerLayer(config, layer_id=i) for i in range(config.num_hidden_layers)]) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
head_mask=None, |
|
output_attentions=False, |
|
output_hidden_states=False, |
|
return_dict=True, |
|
): |
|
|
|
is_index_masked = attention_mask < 0 |
|
is_index_global_attn = attention_mask > 0 |
|
is_global_attn = is_index_global_attn.flatten().any().item() |
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
|
|
all_attentions = () if output_attentions else None |
|
all_global_attentions = () if (output_attentions and is_global_attn) else None |
|
|
|
|
|
if head_mask is not None: |
|
assert head_mask.size()[0] == ( |
|
len(self.layer) |
|
), f"The head_mask should be specified for {len(self.layer)} layers, but it is for {head_mask.size()[0]}." |
|
for idx, layer_module in enumerate(self.layer): |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if getattr(self.config, "gradient_checkpointing", False) and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs, is_global_attn, output_attentions) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(layer_module), |
|
hidden_states, |
|
attention_mask, |
|
head_mask[idx] if head_mask is not None else None, |
|
is_index_masked, |
|
is_index_global_attn, |
|
) |
|
else: |
|
layer_outputs = layer_module( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
layer_head_mask=head_mask[idx] if head_mask is not None else None, |
|
is_index_masked=is_index_masked, |
|
is_index_global_attn=is_index_global_attn, |
|
is_global_attn=is_global_attn, |
|
output_attentions=output_attentions, |
|
) |
|
hidden_states = layer_outputs[0] |
|
|
|
if output_attentions: |
|
|
|
all_attentions = all_attentions + \ |
|
(layer_outputs[1].transpose(1, 2),) |
|
|
|
if is_global_attn: |
|
|
|
all_global_attentions = all_global_attentions + \ |
|
(layer_outputs[2].transpose(2, 3),) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v for v in [hidden_states, all_hidden_states, all_attentions, all_global_attentions] if v is not None |
|
) |
|
return LongformerBaseModelOutput( |
|
last_hidden_state=hidden_states, |
|
hidden_states=all_hidden_states, |
|
attentions=all_attentions, |
|
global_attentions=all_global_attentions, |
|
) |
|
|
|
|
|
|
|
class LongformerPooler(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.activation = nn.Tanh() |
|
|
|
def forward(self, hidden_states): |
|
|
|
|
|
first_token_tensor = hidden_states[:, 0] |
|
pooled_output = self.dense(first_token_tensor) |
|
pooled_output = self.activation(pooled_output) |
|
return pooled_output |
|
|
|
|
|
|
|
class LongformerLMHead(nn.Module): |
|
"""Longformer Head for masked language modeling.""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.layer_norm = nn.LayerNorm( |
|
config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
self.decoder = nn.Linear(config.hidden_size, config.vocab_size) |
|
self.bias = nn.Parameter(torch.zeros(config.vocab_size)) |
|
self.decoder.bias = self.bias |
|
|
|
def forward(self, features, **kwargs): |
|
x = self.dense(features) |
|
x = gelu(x) |
|
x = self.layer_norm(x) |
|
|
|
|
|
x = self.decoder(x) |
|
|
|
return x |
|
|
|
def _tie_weights(self): |
|
|
|
self.bias = self.decoder.bias |
|
|
|
|
|
class LongformerPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = LongformerConfig |
|
base_model_prefix = "longformer" |
|
_keys_to_ignore_on_load_missing = [r"position_ids"] |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights""" |
|
if isinstance(module, nn.Linear): |
|
|
|
|
|
module.weight.data.normal_( |
|
mean=0.0, std=self.config.initializer_range) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_( |
|
mean=0.0, std=self.config.initializer_range) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|
|
|
|
LONGFORMER_START_DOCSTRING = r""" |
|
|
|
This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic |
|
methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, |
|
pruning heads etc.) |
|
|
|
This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__ |
|
subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to |
|
general usage and behavior. |
|
|
|
Parameters: |
|
config (:class:`~transformers.LongformerConfig`): Model configuration class with all the parameters of the |
|
model. Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model |
|
weights. |
|
""" |
|
|
|
LONGFORMER_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`): |
|
Indices of input sequence tokens in the vocabulary. |
|
|
|
Indices can be obtained using :class:`~transformers.LongformerTokenizer`. See |
|
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for |
|
details. |
|
|
|
`What are input IDs? <../glossary.html#input-ids>`__ |
|
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
`What are attention masks? <../glossary.html#attention-mask>`__ |
|
global_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`): |
|
Mask to decide the attention given on each token, local attention or global attention. Tokens with global |
|
attention attends to all other tokens, and all other tokens attend to them. This is important for |
|
task-specific finetuning because it makes the model more flexible at representing the task. For example, |
|
for classification, the <s> token should be given global attention. For QA, all question tokens should also |
|
have global attention. Please refer to the `Longformer paper <https://arxiv.org/abs/2004.05150>`__ for more |
|
details. Mask values selected in ``[0, 1]``: |
|
|
|
- 0 for local attention (a sliding window attention), |
|
- 1 for global attention (tokens that attend to all other tokens, and all other tokens attend to them). |
|
|
|
head_mask (:obj:`torch.Tensor` of shape :obj:`(num_layers, num_heads)`, `optional`): |
|
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in ``[0, 1]``: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
decoder_head_mask (:obj:`torch.Tensor` of shape :obj:`(num_layers, num_heads)`, `optional`): |
|
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in ``[0, 1]``: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
token_type_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`): |
|
Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0, |
|
1]``: |
|
|
|
- 0 corresponds to a `sentence A` token, |
|
- 1 corresponds to a `sentence B` token. |
|
|
|
`What are token type IDs? <../glossary.html#token-type-ids>`_ |
|
position_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, |
|
config.max_position_embeddings - 1]``. |
|
|
|
`What are position IDs? <../glossary.html#position-ids>`_ |
|
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`): |
|
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. |
|
This is useful if you want more control over how to convert :obj:`input_ids` indices into associated |
|
vectors than the model's internal embedding lookup matrix. |
|
output_attentions (:obj:`bool`, `optional`): |
|
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned |
|
tensors for more detail. |
|
output_hidden_states (:obj:`bool`, `optional`): |
|
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for |
|
more detail. |
|
return_dict (:obj:`bool`, `optional`): |
|
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare Longformer Model outputting raw hidden-states without any specific head on top.", |
|
LONGFORMER_START_DOCSTRING, |
|
) |
|
class LongformerModel(LongformerPreTrainedModel): |
|
""" |
|
This class copied code from :class:`~transformers.RobertaModel` and overwrote standard self-attention with |
|
longformer self-attention to provide the ability to process long sequences following the self-attention approach |
|
described in `Longformer: the Long-Document Transformer <https://arxiv.org/abs/2004.05150>`__ by Iz Beltagy, |
|
Matthew E. Peters, and Arman Cohan. Longformer self-attention combines a local (sliding window) and global |
|
attention to extend to long documents without the O(n^2) increase in memory and compute. |
|
|
|
The self-attention module :obj:`LongformerSelfAttention` implemented here supports the combination of local and |
|
global attention but it lacks support for autoregressive attention and dilated attention. Autoregressive and |
|
dilated attention are more relevant for autoregressive language modeling than finetuning on downstream tasks. |
|
Future release will add support for autoregressive attention, but the support for dilated attention requires a |
|
custom CUDA kernel to be memory and compute efficient. |
|
|
|
""" |
|
|
|
def __init__(self, config, add_pooling_layer=True): |
|
super().__init__(config) |
|
self.config = config |
|
|
|
if isinstance(config.attention_window, int): |
|
assert config.attention_window % 2 == 0, "`config.attention_window` has to be an even value" |
|
assert config.attention_window > 0, "`config.attention_window` has to be positive" |
|
config.attention_window = [ |
|
config.attention_window] * config.num_hidden_layers |
|
else: |
|
assert len(config.attention_window) == config.num_hidden_layers, ( |
|
"`len(config.attention_window)` should equal `config.num_hidden_layers`. " |
|
f"Expected {config.num_hidden_layers}, given {len(config.attention_window)}" |
|
) |
|
|
|
self.embeddings = LongformerEmbeddings(config) |
|
self.encoder = LongformerEncoder(config) |
|
self.pooler = LongformerPooler(config) if add_pooling_layer else None |
|
|
|
self.init_weights() |
|
|
|
def get_input_embeddings(self): |
|
return self.embeddings.word_embeddings |
|
|
|
def set_input_embeddings(self, value): |
|
self.embeddings.word_embeddings = value |
|
|
|
def _prune_heads(self, heads_to_prune): |
|
""" |
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base |
|
class PreTrainedModel |
|
""" |
|
for layer, heads in heads_to_prune.items(): |
|
self.encoder.layer[layer].attention.prune_heads(heads) |
|
|
|
def _pad_to_window_size( |
|
self, |
|
input_ids: torch.Tensor, |
|
attention_mask: torch.Tensor, |
|
token_type_ids: torch.Tensor, |
|
position_ids: torch.Tensor, |
|
inputs_embeds: torch.Tensor, |
|
pad_token_id: int, |
|
): |
|
"""A helper function to pad tokens and mask to work with implementation of Longformer self-attention.""" |
|
|
|
attention_window = ( |
|
self.config.attention_window |
|
if isinstance(self.config.attention_window, int) |
|
else max(self.config.attention_window) |
|
) |
|
|
|
assert attention_window % 2 == 0, f"`attention_window` should be an even value. Given {attention_window}" |
|
input_shape = input_ids.shape if input_ids is not None else inputs_embeds.shape |
|
batch_size, seq_len = input_shape[:2] |
|
|
|
padding_len = (attention_window - seq_len % |
|
attention_window) % attention_window |
|
if padding_len > 0: |
|
logger.info( |
|
f"Input ids are automatically padded from {seq_len} to {seq_len + padding_len} to be a multiple of " |
|
f"`config.attention_window`: {attention_window}" |
|
) |
|
if input_ids is not None: |
|
input_ids = nn.functional.pad( |
|
input_ids, (0, padding_len), value=pad_token_id) |
|
if position_ids is not None: |
|
|
|
position_ids = nn.functional.pad( |
|
position_ids, (0, padding_len), value=pad_token_id) |
|
if inputs_embeds is not None: |
|
input_ids_padding = inputs_embeds.new_full( |
|
(batch_size, padding_len), |
|
self.config.pad_token_id, |
|
dtype=torch.long, |
|
) |
|
inputs_embeds_padding = self.embeddings(input_ids_padding) |
|
inputs_embeds = torch.cat( |
|
[inputs_embeds, inputs_embeds_padding], dim=-2) |
|
|
|
attention_mask = nn.functional.pad( |
|
attention_mask, (0, padding_len), value=False |
|
) |
|
token_type_ids = nn.functional.pad( |
|
token_type_ids, (0, padding_len), value=0) |
|
|
|
return padding_len, input_ids, attention_mask, token_type_ids, position_ids, inputs_embeds |
|
|
|
def _merge_to_attention_mask(self, attention_mask: torch.Tensor, global_attention_mask: torch.Tensor): |
|
|
|
|
|
|
|
if attention_mask is not None: |
|
attention_mask = attention_mask * (global_attention_mask + 1) |
|
else: |
|
|
|
|
|
attention_mask = global_attention_mask + 1 |
|
return attention_mask |
|
|
|
@add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@replace_return_docstrings(output_type=LongformerBaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
global_attention_mask=None, |
|
head_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
inputs_embeds=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
r""" |
|
|
|
Returns: |
|
|
|
Examples:: |
|
|
|
>>> import torch |
|
>>> from transformers import LongformerModel, LongformerTokenizer |
|
|
|
>>> model = LongformerModel.from_pretrained('allenai/longformer-base-4096') |
|
>>> tokenizer = LongformerTokenizer.from_pretrained('allenai/longformer-base-4096') |
|
|
|
>>> SAMPLE_TEXT = ' '.join(['Hello world! '] * 1000) # long input document |
|
>>> input_ids = torch.tensor(tokenizer.encode(SAMPLE_TEXT)).unsqueeze(0) # batch of size 1 |
|
|
|
>>> attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=input_ids.device) # initialize to local attention |
|
>>> global_attention_mask = torch.zeros(input_ids.shape, dtype=torch.long, device=input_ids.device) # initialize to global attention to be deactivated for all tokens |
|
>>> global_attention_mask[:, [1, 4, 21,]] = 1 # Set global attention to random tokens for the sake of this example |
|
... # Usually, set global attention based on the task. For example, |
|
... # classification: the <s> token |
|
... # QA: question tokens |
|
... # LM: potentially on the beginning of sentences and paragraphs |
|
>>> outputs = model(input_ids, attention_mask=attention_mask, global_attention_mask=global_attention_mask) |
|
>>> sequence_output = outputs.last_hidden_state |
|
>>> pooled_output = outputs.pooler_output |
|
""" |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError( |
|
"You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
input_shape = input_ids.size() |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
else: |
|
raise ValueError( |
|
"You have to specify either input_ids or inputs_embeds") |
|
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones(input_shape, device=device) |
|
if token_type_ids is None: |
|
token_type_ids = torch.zeros( |
|
input_shape, dtype=torch.long, device=device) |
|
|
|
|
|
if global_attention_mask is not None: |
|
attention_mask = self._merge_to_attention_mask( |
|
attention_mask, global_attention_mask) |
|
|
|
if self.config.use_sparse_attention: |
|
padding_len, input_ids, attention_mask, token_type_ids, position_ids, inputs_embeds = self._pad_to_window_size( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
inputs_embeds=inputs_embeds, |
|
pad_token_id=self.config.pad_token_id, |
|
) |
|
|
|
|
|
|
|
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device)[ |
|
:, 0, 0, : |
|
] |
|
|
|
embedding_output = self.embeddings( |
|
input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds |
|
) |
|
|
|
encoder_outputs = self.encoder( |
|
embedding_output, |
|
attention_mask=extended_attention_mask, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
sequence_output = encoder_outputs[0] |
|
pooled_output = self.pooler( |
|
sequence_output) if self.pooler is not None else None |
|
|
|
|
|
if self.config.use_sparse_attention: |
|
if padding_len > 0: |
|
|
|
sequence_output = sequence_output[:, :-padding_len] |
|
|
|
if not return_dict: |
|
return (sequence_output, pooled_output) + encoder_outputs[1:] |
|
|
|
return LongformerBaseModelOutputWithPooling( |
|
last_hidden_state=sequence_output, |
|
pooler_output=pooled_output, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
global_attentions=encoder_outputs.global_attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings("""Longformer Model with a `language modeling` head on top. """, LONGFORMER_START_DOCSTRING) |
|
class LongformerForMaskedLM(LongformerPreTrainedModel): |
|
|
|
_keys_to_ignore_on_load_unexpected = [r"pooler"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.longformer = LongformerModel(config, add_pooling_layer=False) |
|
self.lm_head = LongformerLMHead(config) |
|
|
|
self.init_weights() |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head.decoder |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head.decoder = new_embeddings |
|
|
|
@add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@replace_return_docstrings(output_type=LongformerMaskedLMOutput, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
global_attention_mask=None, |
|
head_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
inputs_embeds=None, |
|
labels=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
r""" |
|
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): |
|
Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., |
|
config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored |
|
(masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` |
|
kwargs (:obj:`Dict[str, any]`, optional, defaults to `{}`): |
|
Used to hide legacy arguments that have been deprecated. |
|
|
|
Returns: |
|
|
|
Examples:: |
|
|
|
>>> import torch |
|
>>> from transformers import LongformerForMaskedLM, LongformerTokenizer |
|
|
|
>>> model = LongformerForMaskedLM.from_pretrained('allenai/longformer-base-4096') |
|
>>> tokenizer = LongformerTokenizer.from_pretrained('allenai/longformer-base-4096') |
|
|
|
>>> SAMPLE_TEXT = ' '.join(['Hello world! '] * 1000) # long input document |
|
>>> input_ids = torch.tensor(tokenizer.encode(SAMPLE_TEXT)).unsqueeze(0) # batch of size 1 |
|
|
|
>>> attention_mask = None # default is local attention everywhere, which is a good choice for MaskedLM |
|
... # check ``LongformerModel.forward`` for more details how to set `attention_mask` |
|
>>> outputs = model(input_ids, attention_mask=attention_mask, labels=input_ids) |
|
>>> loss = outputs.loss |
|
>>> prediction_logits = output.logits |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.longformer( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
global_attention_mask=global_attention_mask, |
|
head_mask=head_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
sequence_output = outputs[0] |
|
prediction_scores = self.lm_head(sequence_output) |
|
|
|
masked_lm_loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
masked_lm_loss = loss_fct( |
|
prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (prediction_scores,) + outputs[2:] |
|
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output |
|
|
|
return LongformerMaskedLMOutput( |
|
loss=masked_lm_loss, |
|
logits=prediction_scores, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
global_attentions=outputs.global_attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
Longformer Model transformer with a sequence classification/regression head on top (a linear layer on top of the |
|
pooled output) e.g. for GLUE tasks. |
|
""", |
|
LONGFORMER_START_DOCSTRING, |
|
) |
|
class LongformerForSequenceClassification(LongformerPreTrainedModel): |
|
|
|
_keys_to_ignore_on_load_unexpected = [r"pooler"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.config = config |
|
|
|
self.longformer = LongformerModel(config, add_pooling_layer=False) |
|
self.classifier = LongformerClassificationHead(config) |
|
|
|
self.init_weights() |
|
|
|
@add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@add_code_sample_docstrings( |
|
processor_class=_TOKENIZER_FOR_DOC, |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=LongformerSequenceClassifierOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
global_attention_mask=None, |
|
head_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
inputs_embeds=None, |
|
labels=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
r""" |
|
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): |
|
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., |
|
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), |
|
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if global_attention_mask is None: |
|
logger.info("Initializing global attention on CLS token...") |
|
global_attention_mask = torch.zeros_like(input_ids) |
|
|
|
global_attention_mask[:, 0] = 1 |
|
|
|
outputs = self.longformer( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
global_attention_mask=global_attention_mask, |
|
head_mask=head_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
sequence_output = outputs[0] |
|
logits = self.classifier(sequence_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct( |
|
logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(logits, labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return LongformerSequenceClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
global_attentions=outputs.global_attentions, |
|
) |
|
|
|
|
|
class LongformerClassificationHead(nn.Module): |
|
"""Head for sentence-level classification tasks.""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
self.out_proj = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
def forward(self, hidden_states, **kwargs): |
|
|
|
hidden_states = hidden_states[:, 0, :] |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = torch.tanh(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
output = self.out_proj(hidden_states) |
|
return output |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
Longformer Model with a span classification head on top for extractive question-answering tasks like SQuAD / |
|
TriviaQA (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). |
|
""", |
|
LONGFORMER_START_DOCSTRING, |
|
) |
|
class LongformerForQuestionAnswering(LongformerPreTrainedModel): |
|
|
|
_keys_to_ignore_on_load_unexpected = [r"pooler"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
|
|
self.longformer = LongformerModel(config, add_pooling_layer=False) |
|
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
self.init_weights() |
|
|
|
@add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@replace_return_docstrings(output_type=LongformerQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
global_attention_mask=None, |
|
head_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
inputs_embeds=None, |
|
start_positions=None, |
|
end_positions=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
r""" |
|
start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): |
|
Labels for position (index) of the start of the labelled span for computing the token classification loss. |
|
Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the |
|
sequence are not taken into account for computing the loss. |
|
end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): |
|
Labels for position (index) of the end of the labelled span for computing the token classification loss. |
|
Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the |
|
sequence are not taken into account for computing the loss. |
|
|
|
Returns: |
|
|
|
Examples:: |
|
|
|
>>> from transformers import LongformerTokenizer, LongformerForQuestionAnswering |
|
>>> import torch |
|
|
|
>>> tokenizer = LongformerTokenizer.from_pretrained("allenai/longformer-large-4096-finetuned-triviaqa") |
|
>>> model = LongformerForQuestionAnswering.from_pretrained("allenai/longformer-large-4096-finetuned-triviaqa") |
|
|
|
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" |
|
>>> encoding = tokenizer(question, text, return_tensors="pt") |
|
>>> input_ids = encoding["input_ids"] |
|
|
|
>>> # default is local attention everywhere |
|
>>> # the forward method will automatically set global attention on question tokens |
|
>>> attention_mask = encoding["attention_mask"] |
|
|
|
>>> outputs = model(input_ids, attention_mask=attention_mask) |
|
>>> start_logits = outputs.start_logits |
|
>>> end_logits = outputs.end_logits |
|
>>> all_tokens = tokenizer.convert_ids_to_tokens(input_ids[0].tolist()) |
|
|
|
>>> answer_tokens = all_tokens[torch.argmax(start_logits) :torch.argmax(end_logits)+1] |
|
>>> answer = tokenizer.decode(tokenizer.convert_tokens_to_ids(answer_tokens)) # remove space prepending space token |
|
|
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if global_attention_mask is None: |
|
if input_ids is None: |
|
logger.warning( |
|
"It is not possible to automatically generate the `global_attention_mask` because input_ids is None. Please make sure that it is correctly set." |
|
) |
|
else: |
|
|
|
global_attention_mask = _compute_global_attention_mask( |
|
input_ids, self.config.sep_token_id) |
|
|
|
outputs = self.longformer( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
global_attention_mask=global_attention_mask, |
|
head_mask=head_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
|
|
logits = self.qa_outputs(sequence_output) |
|
start_logits, end_logits = logits.split(1, dim=-1) |
|
start_logits = start_logits.squeeze(-1).contiguous() |
|
end_logits = end_logits.squeeze(-1).contiguous() |
|
|
|
total_loss = None |
|
if start_positions is not None and end_positions is not None: |
|
|
|
if len(start_positions.size()) > 1: |
|
start_positions = start_positions.squeeze(-1) |
|
if len(end_positions.size()) > 1: |
|
end_positions = end_positions.squeeze(-1) |
|
|
|
ignored_index = start_logits.size(1) |
|
start_positions = start_positions.clamp(0, ignored_index) |
|
end_positions = end_positions.clamp(0, ignored_index) |
|
|
|
loss_fct = CrossEntropyLoss(ignore_index=ignored_index) |
|
start_loss = loss_fct(start_logits, start_positions) |
|
end_loss = loss_fct(end_logits, end_positions) |
|
total_loss = (start_loss + end_loss) / 2 |
|
|
|
if not return_dict: |
|
output = (start_logits, end_logits) + outputs[2:] |
|
return ((total_loss,) + output) if total_loss is not None else output |
|
|
|
return LongformerQuestionAnsweringModelOutput( |
|
loss=total_loss, |
|
start_logits=start_logits, |
|
end_logits=end_logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
global_attentions=outputs.global_attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
Longformer Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. |
|
for Named-Entity-Recognition (NER) tasks. |
|
""", |
|
LONGFORMER_START_DOCSTRING, |
|
) |
|
class LongformerForTokenClassification(LongformerPreTrainedModel): |
|
|
|
_keys_to_ignore_on_load_unexpected = [r"pooler"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
|
|
self.longformer = LongformerModel(config, add_pooling_layer=False) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
self.init_weights() |
|
|
|
@add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@add_code_sample_docstrings( |
|
processor_class=_TOKENIZER_FOR_DOC, |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=LongformerTokenClassifierOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
global_attention_mask=None, |
|
head_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
inputs_embeds=None, |
|
labels=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
r""" |
|
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): |
|
Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels - |
|
1]``. |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.longformer( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
global_attention_mask=global_attention_mask, |
|
head_mask=head_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
|
|
sequence_output = self.dropout(sequence_output) |
|
logits = self.classifier(sequence_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
|
|
if attention_mask is not None: |
|
active_loss = attention_mask.view(-1) == 1 |
|
active_logits = logits.view(-1, self.num_labels) |
|
active_labels = torch.where( |
|
active_loss, labels.view(-1), torch.tensor( |
|
loss_fct.ignore_index).type_as(labels) |
|
) |
|
loss = loss_fct(active_logits, active_labels) |
|
else: |
|
loss = loss_fct( |
|
logits.view(-1, self.num_labels), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return LongformerTokenClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
global_attentions=outputs.global_attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
Longformer Model with a multiple choice classification head on top (a linear layer on top of the pooled output and |
|
a softmax) e.g. for RocStories/SWAG tasks. |
|
""", |
|
LONGFORMER_START_DOCSTRING, |
|
) |
|
class LongformerForMultipleChoice(LongformerPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.longformer = LongformerModel(config) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
self.classifier = nn.Linear(config.hidden_size, 1) |
|
|
|
self.init_weights() |
|
|
|
@add_start_docstrings_to_model_forward( |
|
LONGFORMER_INPUTS_DOCSTRING.format( |
|
"batch_size, num_choices, sequence_length") |
|
) |
|
@add_code_sample_docstrings( |
|
processor_class=_TOKENIZER_FOR_DOC, |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=LongformerMultipleChoiceModelOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids=None, |
|
token_type_ids=None, |
|
attention_mask=None, |
|
global_attention_mask=None, |
|
head_mask=None, |
|
labels=None, |
|
position_ids=None, |
|
inputs_embeds=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
r""" |
|
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): |
|
Labels for computing the multiple choice classification loss. Indices should be in ``[0, ..., |
|
num_choices-1]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See |
|
:obj:`input_ids` above) |
|
""" |
|
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if global_attention_mask is None and input_ids is not None: |
|
logger.info("Initializing global attention on multiple choice...") |
|
|
|
global_attention_mask = torch.stack( |
|
[ |
|
_compute_global_attention_mask( |
|
input_ids[:, i], self.config.sep_token_id, before_sep_token=False) |
|
for i in range(num_choices) |
|
], |
|
dim=1, |
|
) |
|
|
|
flat_input_ids = input_ids.view(-1, input_ids.size(-1) |
|
) if input_ids is not None else None |
|
flat_position_ids = position_ids.view( |
|
-1, position_ids.size(-1)) if position_ids is not None else None |
|
flat_token_type_ids = token_type_ids.view( |
|
-1, token_type_ids.size(-1)) if token_type_ids is not None else None |
|
flat_attention_mask = attention_mask.view( |
|
-1, attention_mask.size(-1)) if attention_mask is not None else None |
|
flat_global_attention_mask = ( |
|
global_attention_mask.view(-1, global_attention_mask.size(-1)) |
|
if global_attention_mask is not None |
|
else None |
|
) |
|
flat_inputs_embeds = ( |
|
inputs_embeds.view(-1, inputs_embeds.size(-2), |
|
inputs_embeds.size(-1)) |
|
if inputs_embeds is not None |
|
else None |
|
) |
|
|
|
outputs = self.longformer( |
|
flat_input_ids, |
|
position_ids=flat_position_ids, |
|
token_type_ids=flat_token_type_ids, |
|
attention_mask=flat_attention_mask, |
|
global_attention_mask=flat_global_attention_mask, |
|
head_mask=head_mask, |
|
inputs_embeds=flat_inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
pooled_output = outputs[1] |
|
|
|
pooled_output = self.dropout(pooled_output) |
|
logits = self.classifier(pooled_output) |
|
reshaped_logits = logits.view(-1, num_choices) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(reshaped_logits, labels) |
|
|
|
if not return_dict: |
|
output = (reshaped_logits,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return LongformerMultipleChoiceModelOutput( |
|
loss=loss, |
|
logits=reshaped_logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
global_attentions=outputs.global_attentions, |
|
) |
|
|