summary / fengshen /examples /zen2_finetune /ner_zen2_base_msra.sh
fclong's picture
Upload 396 files
8ebda9e
#!/bin/bash
#SBATCH --job-name=zen2_base_msra # create a short name for your job
#SBATCH --nodes=1 # node count
#SBATCH --ntasks=1 # total number of tasks across all nodes
#SBATCH --cpus-per-task=30 # cpu-cores per task (>1 if multi-threaded tasks)
#SBATCH --gres=gpu:1 # number of gpus per node
#SBATCH --mail-type=ALL # send email when job begins, ends or failed etc.
#SBATCH -o /cognitive_comp/ganruyi/experiments/ner_finetune/zen2_base_msra/%x-%j.log # output and error file name (%x=job name, %j=job id)
# export CUDA_VISIBLE_DEVICES='2'
export TORCH_EXTENSIONS_DIR=/cognitive_comp/ganruyi/tmp/torch_extendsions
MODEL_NAME=zen2_base
TASK=msra
ZERO_STAGE=1
STRATEGY=deepspeed_stage_${ZERO_STAGE}
ROOT_DIR=/cognitive_comp/ganruyi/experiments/ner_finetune/${MODEL_NAME}_${TASK}
if [ ! -d ${ROOT_DIR} ];then
mkdir -p ${ROOT_DIR}
echo ${ROOT_DIR} created!!!!!!!!!!!!!!
else
echo ${ROOT_DIR} exist!!!!!!!!!!!!!!!
fi
DATA_DIR=/cognitive_comp/lujunyu/data_zh/NER_Aligned/MSRA/
PRETRAINED_MODEL_PATH=/cognitive_comp/ganruyi/hf_models/zen/zh_zen_base_2.0
CHECKPOINT_PATH=${ROOT_DIR}/ckpt/
OUTPUT_PATH=${ROOT_DIR}/predict.json
DATA_ARGS="\
--data_dir $DATA_DIR \
--train_data train_dev.char.bmes \
--valid_data test.char.bmes \
--test_data test.char.bmes \
--train_batchsize 32 \
--valid_batchsize 16 \
--max_seq_length 256 \
--task_name msra \
"
MODEL_ARGS="\
--learning_rate 3e-5 \
--weight_decay 0.1 \
--warmup_ratio 0.01 \
--markup bioes \
--middle_prefix M- \
"
MODEL_CHECKPOINT_ARGS="\
--monitor val_f1 \
--save_top_k 3 \
--mode max \
--every_n_train_steps 800 \
--save_weights_only True \
--dirpath $CHECKPOINT_PATH \
--filename model-{epoch:02d}-{val_f1:.4f} \
"
TRAINER_ARGS="\
--max_epochs 30 \
--gpus 1 \
--check_val_every_n_epoch 1 \
--val_check_interval 800 \
--default_root_dir $ROOT_DIR \
"
options=" \
--pretrained_model_path $PRETRAINED_MODEL_PATH \
--vocab_file $PRETRAINED_MODEL_PATH/vocab.txt \
--do_lower_case \
--output_save_path $OUTPUT_PATH \
$DATA_ARGS \
$MODEL_ARGS \
$MODEL_CHECKPOINT_ARGS \
$TRAINER_ARGS \
"
SCRIPT_PATH=/cognitive_comp/ganruyi/Fengshenbang-LM/fengshen/examples/zen2_finetune/fengshen_token_level_ft_task.py
/home/ganruyi/anaconda3/bin/python $SCRIPT_PATH $options
# SINGULARITY_PATH=/cognitive_comp/ganruyi/pytorch21_06_py3_docker_image_v2.sif
# python3 $SCRIPT_PATH $options
# source activate base
# singularity exec --nv -B /cognitive_comp/:/cognitive_comp/ $SINGULARITY_PATH /home/ganruyi/anaconda3/bin/python $SCRIPT_PATH $options
# /home/ganruyi/anaconda3/bin/python $SCRIPT_PATH $options