|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from fengshen.models.zen2.modeling import ZenForTokenClassification |
|
from fengshen.metric.metric import SeqEntityScore |
|
from fengshen.models.zen2.tokenization import BertTokenizer |
|
from fengshen.models.zen2.ngram_utils import ZenNgramDict |
|
from pytorch_lightning.callbacks import LearningRateMonitor |
|
from dataclasses import dataclass |
|
import logging |
|
import math |
|
import numpy as np |
|
import os |
|
import json |
|
import torch |
|
import pytorch_lightning as pl |
|
import argparse |
|
from pytorch_lightning.callbacks import ModelCheckpoint |
|
from torch.utils.data import Dataset, DataLoader |
|
|
|
import torch.nn.functional as F |
|
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', |
|
datefmt='%m/%d/%Y %H:%M:%S', |
|
level=logging.ERROR) |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class InputExample(object): |
|
"""A single training/test example for simple sequence classification.""" |
|
|
|
def __init__(self, guid, text_a, text_b=None, label=None): |
|
"""Constructs a InputExample. |
|
|
|
Args: |
|
guid: Unique id for the example. |
|
text_a: string. The untokenized text of the first sequence. For single |
|
sequence tasks, only this sequence must be specified. |
|
text_b: (Optional) string. The untokenized text of the second sequence. |
|
Only must be specified for sequence pair tasks. |
|
label: (Optional) string. The label of the example. This should be |
|
specified for train and dev examples, but not for test examples. |
|
""" |
|
self.guid = guid |
|
self.text_a = text_a |
|
self.text_b = text_b |
|
self.label = label |
|
|
|
|
|
class InputFeatures(object): |
|
"""A single set of features of data.""" |
|
|
|
def __init__(self, input_ids, input_mask, segment_ids, label_id, ngram_ids, ngram_positions, ngram_lengths, |
|
ngram_tuples, ngram_seg_ids, ngram_masks, valid_ids=None, label_mask=None, b_use_valid_filter=False): |
|
self.input_ids = input_ids |
|
self.input_mask = input_mask |
|
self.segment_ids = segment_ids |
|
self.label_id = label_id |
|
self.valid_ids = valid_ids |
|
self.label_mask = label_mask |
|
|
|
self.ngram_ids = ngram_ids |
|
self.ngram_positions = ngram_positions |
|
self.ngram_lengths = ngram_lengths |
|
self.ngram_tuples = ngram_tuples |
|
self.ngram_seg_ids = ngram_seg_ids |
|
self.ngram_masks = ngram_masks |
|
|
|
self.b_use_valid_filter = b_use_valid_filter |
|
|
|
|
|
def convert_examples_to_features(examples, label_map, max_seq_length, tokenizer, ngram_dict): |
|
"""Loads a data file into a list of `InputBatch`s.""" |
|
|
|
|
|
|
|
|
|
features = [] |
|
b_use_valid_filter = False |
|
for (ex_index, example) in enumerate(examples): |
|
textlist = example.text_a |
|
labellist = example.label |
|
tokens = [] |
|
labels = [] |
|
valid = [] |
|
label_mask = [] |
|
for i, word in enumerate(textlist): |
|
token = tokenizer.tokenize(word) |
|
if len(tokens) + len(token) > max_seq_length - 2: |
|
break |
|
tokens.extend(token) |
|
label_1 = labellist[i] |
|
for m in range(len(token)): |
|
if m == 0: |
|
labels.append(label_1) |
|
valid.append(1) |
|
label_mask.append(1) |
|
else: |
|
valid.append(0) |
|
b_use_valid_filter = True |
|
ntokens = [] |
|
segment_ids = [] |
|
label_ids = [] |
|
ntokens.append("[CLS]") |
|
segment_ids.append(0) |
|
valid.insert(0, 1) |
|
label_mask.insert(0, 1) |
|
label_ids.append(label_map["[CLS]"]) |
|
for i, token in enumerate(tokens): |
|
ntokens.append(token) |
|
segment_ids.append(0) |
|
if len(labels) > i: |
|
label_ids.append(label_map[labels[i]]) |
|
ntokens.append("[SEP]") |
|
segment_ids.append(0) |
|
valid.append(1) |
|
label_mask.append(1) |
|
label_ids.append(label_map["[SEP]"]) |
|
input_ids = tokenizer.convert_tokens_to_ids(ntokens) |
|
input_mask = [1] * len(input_ids) |
|
label_mask = [1] * len(label_ids) |
|
while len(input_ids) < max_seq_length: |
|
input_ids.append(0) |
|
input_mask.append(0) |
|
segment_ids.append(0) |
|
label_ids.append(0) |
|
valid.append(1) |
|
label_mask.append(0) |
|
while len(label_ids) < max_seq_length: |
|
label_ids.append(0) |
|
label_mask.append(0) |
|
assert len(input_ids) == max_seq_length |
|
assert len(input_mask) == max_seq_length |
|
assert len(segment_ids) == max_seq_length |
|
assert len(label_ids) == max_seq_length |
|
assert len(valid) == max_seq_length |
|
assert len(label_mask) == max_seq_length |
|
|
|
|
|
ngram_matches = [] |
|
|
|
max_gram_n = ngram_dict.max_ngram_len |
|
for p in range(2, max_gram_n): |
|
for q in range(0, len(tokens) - p + 1): |
|
character_segment = tokens[q:q + p] |
|
|
|
|
|
character_segment = tuple(character_segment) |
|
if character_segment in ngram_dict.ngram_to_id_dict: |
|
ngram_index = ngram_dict.ngram_to_id_dict[character_segment] |
|
ngram_freq = ngram_dict.ngram_to_freq_dict[character_segment] |
|
ngram_matches.append([ngram_index, q, p, character_segment, ngram_freq]) |
|
|
|
ngram_matches = sorted(ngram_matches, key=lambda s: s[0]) |
|
|
|
max_ngram_in_seq_proportion = math.ceil((len(tokens) / max_seq_length) * ngram_dict.max_ngram_in_seq) |
|
if len(ngram_matches) > max_ngram_in_seq_proportion: |
|
ngram_matches = ngram_matches[:max_ngram_in_seq_proportion] |
|
|
|
ngram_ids = [ngram[0] for ngram in ngram_matches] |
|
ngram_positions = [ngram[1] for ngram in ngram_matches] |
|
ngram_lengths = [ngram[2] for ngram in ngram_matches] |
|
ngram_tuples = [ngram[3] for ngram in ngram_matches] |
|
ngram_freqs = [ngram[4] for ngram in ngram_matches] |
|
ngram_seg_ids = [0 if position < (len(tokens) + 2) else 1 for position in ngram_positions] |
|
|
|
ngram_mask_array = np.zeros(ngram_dict.max_ngram_in_seq, dtype=np.bool) |
|
ngram_mask_array[:len(ngram_ids)] = 1 |
|
|
|
|
|
ngram_positions_matrix = np.zeros(shape=(max_seq_length, ngram_dict.max_ngram_in_seq), dtype=np.int32) |
|
for i in range(len(ngram_ids)): |
|
ngram_positions_matrix[ngram_positions[i]:ngram_positions[i] + ngram_lengths[i], i] = ngram_freqs[i] |
|
ngram_positions_matrix = torch.from_numpy(ngram_positions_matrix.astype(np.float)) |
|
ngram_positions_matrix = torch.div(ngram_positions_matrix, torch.stack( |
|
[torch.sum(ngram_positions_matrix, 1)] * ngram_positions_matrix.size(1)).t() + 1e-10) |
|
ngram_positions_matrix = ngram_positions_matrix.numpy() |
|
|
|
|
|
padding = [0] * (ngram_dict.max_ngram_in_seq - len(ngram_ids)) |
|
ngram_ids += padding |
|
ngram_lengths += padding |
|
ngram_seg_ids += padding |
|
|
|
|
|
|
|
if ex_index < 5: |
|
logger.info("*** Example ***") |
|
logger.info("guid: %s" % (example.guid)) |
|
logger.info("tokens: %s" % " ".join([str(x) for x in tokens])) |
|
logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) |
|
logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask])) |
|
logger.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids])) |
|
logger.info("label: %s (id = %s)" % (",".join([str(x) for x in example.label]), ",".join([str(x) for x in label_ids]))) |
|
logger.info("valid: %s" % " ".join([str(x) for x in valid])) |
|
logger.info("b_use_valid_filter: %s" % str(b_use_valid_filter)) |
|
logger.info("ngram_ids: %s" % " ".join([str(x) for x in ngram_ids])) |
|
logger.info("ngram_positions: %s" % " ".join([str(x) for x in ngram_positions])) |
|
logger.info("ngram_lengths: %s" % " ".join([str(x) for x in ngram_lengths])) |
|
logger.info("ngram_tuples: %s" % " ".join([str(x) for x in ngram_tuples])) |
|
logger.info("ngram_seg_ids: %s" % " ".join([str(x) for x in ngram_seg_ids])) |
|
|
|
features.append( |
|
InputFeatures(input_ids=input_ids, |
|
input_mask=input_mask, |
|
segment_ids=segment_ids, |
|
label_id=label_ids, |
|
ngram_ids=ngram_ids, |
|
ngram_positions=ngram_positions_matrix, |
|
ngram_lengths=ngram_lengths, |
|
ngram_tuples=ngram_tuples, |
|
ngram_seg_ids=ngram_seg_ids, |
|
ngram_masks=ngram_mask_array, |
|
valid_ids=valid, |
|
label_mask=label_mask, |
|
b_use_valid_filter=b_use_valid_filter)) |
|
return features |
|
|
|
|
|
class DataProcessor(object): |
|
"""Base class for data converters for sequence classification data sets.""" |
|
|
|
def get_examples(self, data_path, set_type, quotechar=' '): |
|
"""See base class.""" |
|
return self._create_examples( |
|
self._read_tsv(data_path, self.get_quotechar()), set_type) |
|
|
|
def _create_examples(self, lines, set_type): |
|
examples = [] |
|
for i, (sentence, label) in enumerate(lines): |
|
guid = "%s-%s" % (set_type, i) |
|
text_a = sentence |
|
label = label |
|
examples.append(InputExample(guid=guid, text_a=text_a, label=label)) |
|
return examples |
|
|
|
def get_labels(self): |
|
"""Gets the list of labels for this data set.""" |
|
raise NotImplementedError() |
|
|
|
def get_quotechar(self): |
|
return ' ' |
|
|
|
@classmethod |
|
def _read_tsv(cls, input_file, quotechar=None): |
|
''' |
|
read file |
|
return format : |
|
[ ['EU', 'B-ORG'], ['rejects', 'O'], ['German', 'B-MISC'], ['call', 'O'], ['to', 'O'], ['boycott', 'O'], ['British', 'B-MISC'], ['lamb', 'O'], ['.', 'O'] ] |
|
''' |
|
f = open(input_file) |
|
data = [] |
|
sentence = [] |
|
label = [] |
|
for line in f: |
|
if len(line) == 0 or line.startswith('-DOCSTART') or line[0] == "\n": |
|
if len(sentence) > 0: |
|
data.append((sentence, label)) |
|
sentence = [] |
|
label = [] |
|
continue |
|
splits = line.split(quotechar) |
|
sentence.append(splits[0]) |
|
label.append(splits[-1][:-1]) |
|
|
|
if len(sentence) > 0: |
|
data.append((sentence, label)) |
|
sentence = [] |
|
label = [] |
|
return data |
|
|
|
|
|
class MSRAProcessor(DataProcessor): |
|
"""Processor for the msra data set.""" |
|
|
|
def get_labels(self): |
|
return ['B-NR', 'B-NS', 'B-NT', 'E-NR', 'E-NS', 'E-NT', 'M-NR', |
|
'M-NS', 'M-NT', 'O', 'S-NR', 'S-NS', 'S-NT', '[CLS]', '[SEP]'] |
|
|
|
|
|
class OntoNotes4Processor(DataProcessor): |
|
"""Processor for the OntoNotes4 data set.""" |
|
|
|
def get_labels(self): |
|
return ['B-GPE', 'B-LOC', 'B-ORG', 'B-PER', 'E-GPE', 'E-LOC', |
|
'E-ORG', 'E-PER', 'M-GPE', 'M-LOC', 'M-ORG', 'M-PER', 'O', |
|
'S-GPE', 'S-LOC', 'S-ORG', 'S-PER', '[CLS]', '[SEP]'] |
|
|
|
|
|
class WeiboProcessor(DataProcessor): |
|
"""Processor for the Weibo data set.""" |
|
|
|
def get_labels(self): |
|
return ['B-GPE.NAM', 'B-GPE.NOM', 'B-LOC.NAM', 'B-LOC.NOM', |
|
'B-ORG.NAM', 'B-ORG.NOM', 'B-PER.NAM', 'B-PER.NOM', 'E-GPE.NAM', |
|
'E-GPE.NOM', 'E-LOC.NAM', 'E-LOC.NOM', 'E-ORG.NAM', 'E-ORG.NOM', |
|
'E-PER.NAM', 'E-PER.NOM', 'M-GPE.NAM', 'M-LOC.NAM', 'M-LOC.NOM', |
|
'M-ORG.NAM', 'M-ORG.NOM', 'M-PER.NAM', 'M-PER.NOM', 'O', |
|
'S-GPE.NAM', 'S-LOC.NOM', 'S-PER.NAM', 'S-PER.NOM', '[CLS]', '[SEP]'] |
|
|
|
|
|
class ResumeProcessor(DataProcessor): |
|
"""Processor for the resume data set.""" |
|
|
|
def get_labels(self): |
|
return ['B-CONT', 'B-EDU', 'B-LOC', 'B-NAME', 'B-ORG', 'B-PRO', |
|
'B-RACE', 'B-TITLE', 'E-CONT', 'E-EDU', 'E-LOC', 'E-NAME', |
|
'E-ORG', 'E-PRO', 'E-RACE', 'E-TITLE', 'M-CONT', 'M-EDU', |
|
'M-LOC', 'M-NAME', 'M-ORG', 'M-PRO', 'M-RACE', 'M-TITLE', |
|
'O', 'S-NAME', 'S-ORG', 'S-RACE', '[CLS]', '[SEP]'] |
|
|
|
|
|
class CMeEEProcessor(DataProcessor): |
|
"""Processor for the CMeEE data set.""" |
|
|
|
def get_quotechar(self): |
|
return '\t' |
|
|
|
def get_labels(self): |
|
return ['B-临床表现', 'B-医学检验项目', 'B-医疗程序', 'B-医疗设备', |
|
'B-微生物类', 'B-疾病', 'B-科室', 'B-药物', 'B-身体', 'I-临床表现', |
|
'I-医学检验项目', 'I-医疗程序', 'I-医疗设备', 'I-微生物类', |
|
'I-疾病', 'I-科室', 'I-药物', 'I-身体', 'O', '[CLS]', '[SEP]'] |
|
|
|
|
|
class CLUENERProcessor(DataProcessor): |
|
"""Processor for the CLUENER data set.""" |
|
|
|
def get_quotechar(self): |
|
return '\t' |
|
|
|
def get_labels(self): |
|
return ['B-书名', 'B-公司', 'B-地址', 'B-姓名', 'B-政府', 'B-景点', |
|
'B-游戏', 'B-电影', 'B-组织机构', 'B-职位', 'I-书名', 'I-公司', |
|
'I-地址', 'I-姓名', 'I-政府', 'I-景点', 'I-游戏', 'I-电影', |
|
'I-组织机构', 'I-职位', 'O', '[CLS]', '[SEP]'] |
|
|
|
|
|
class TaskDataset(Dataset): |
|
def __init__(self, data_path, processor, mode='train'): |
|
super().__init__() |
|
self.data = self.load_data(data_path, processor, mode) |
|
|
|
def __len__(self): |
|
return len(self.data) |
|
|
|
def __getitem__(self, index): |
|
return self.data[index] |
|
|
|
def load_data(self, data_path, processor, mode): |
|
if mode == "train": |
|
examples = processor.get_examples(data_path, mode) |
|
elif mode == "test": |
|
examples = processor.get_examples(data_path, mode) |
|
elif mode == "dev": |
|
examples = processor.get_examples(data_path, mode) |
|
return examples |
|
|
|
|
|
@dataclass |
|
class TaskCollator: |
|
args = None |
|
tokenizer = None |
|
ngram_dict = None |
|
label2id = None |
|
|
|
def __call__(self, samples): |
|
features = convert_examples_to_features(samples, self.label2id, self.args.max_seq_length, self.tokenizer, self.ngram_dict) |
|
|
|
|
|
input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) |
|
input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long) |
|
segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long) |
|
label_ids = torch.tensor([f.label_id for f in features], dtype=torch.long) |
|
valid_ids = torch.tensor([f.valid_ids for f in features], dtype=torch.long) |
|
|
|
ngram_ids = torch.tensor([f.ngram_ids for f in features], dtype=torch.long) |
|
ngram_positions = torch.tensor([f.ngram_positions for f in features], dtype=torch.long) |
|
|
|
|
|
|
|
|
|
|
|
b_use_valid_filter = torch.tensor([f.b_use_valid_filter for f in features], dtype=torch.bool) |
|
|
|
|
|
b_use_valid_filter = b_use_valid_filter[0] |
|
return { |
|
'input_ids': input_ids, |
|
'input_ngram_ids': ngram_ids, |
|
'ngram_position_matrix': ngram_positions, |
|
'attention_mask': input_mask, |
|
'token_type_ids': segment_ids, |
|
'labels': label_ids, |
|
'valid_ids': valid_ids, |
|
'b_use_valid_filter': b_use_valid_filter, |
|
} |
|
|
|
|
|
class TaskDataModel(pl.LightningDataModule): |
|
@staticmethod |
|
def add_data_specific_args(parent_args): |
|
parser = parent_args.add_argument_group('TASK NAME DataModel') |
|
parser.add_argument('--data_dir', default='./data', type=str) |
|
parser.add_argument('--num_workers', default=8, type=int) |
|
parser.add_argument('--train_data', default='train.json', type=str) |
|
parser.add_argument('--valid_data', default='dev.json', type=str) |
|
parser.add_argument('--test_data', default='test.json', type=str) |
|
parser.add_argument('--train_batchsize', default=16, type=int) |
|
parser.add_argument('--valid_batchsize', default=32, type=int) |
|
parser.add_argument('--max_seq_length', default=128, type=int) |
|
|
|
parser.add_argument('--texta_name', default='text', type=str) |
|
parser.add_argument('--textb_name', default='sentence2', type=str) |
|
parser.add_argument('--label_name', default='label', type=str) |
|
parser.add_argument('--id_name', default='id', type=str) |
|
|
|
parser.add_argument('--dataset_name', default=None, type=str) |
|
parser.add_argument('--vocab_file', |
|
type=str, default=None, |
|
help="Vocabulary mapping/file BERT was pretrainined on") |
|
parser.add_argument("--do_lower_case", |
|
action='store_true', |
|
help="Set this flag if you are using an uncased model.") |
|
parser.add_argument('--task_name', default='weibo', type=str) |
|
|
|
return parent_args |
|
|
|
def __init__(self, args): |
|
super().__init__() |
|
self.train_batchsize = args.train_batchsize |
|
self.valid_batchsize = args.valid_batchsize |
|
self.collator = TaskCollator() |
|
self.collator.args = args |
|
self.collator.tokenizer = BertTokenizer.from_pretrained(args.pretrained_model_path, do_lower_case=args.do_lower_case) |
|
self.collator.ngram_dict = ZenNgramDict.from_pretrained(args.pretrained_model_path, tokenizer=self.collator.tokenizer) |
|
|
|
processors = { |
|
'weibo': WeiboProcessor, |
|
'resume': ResumeProcessor, |
|
'msra': MSRAProcessor, |
|
'ontonotes4': OntoNotes4Processor, |
|
'cmeee': CMeEEProcessor, |
|
'cluener': CLUENERProcessor, |
|
} |
|
if args.task_name not in processors: |
|
raise ValueError("Task not found: %s" % (args.task_name)) |
|
processor = processors[args.task_name]() |
|
|
|
label_list = processor.get_labels() |
|
label2id = {label: i for i, label in enumerate(label_list, 1)} |
|
label2id["[PAD]"] = 0 |
|
self.id2label = {v: k for k, v in label2id.items()} |
|
self.collator.label2id = label2id |
|
|
|
if args.dataset_name is None: |
|
self.train_data = TaskDataset(os.path.join( |
|
args.data_dir, args.train_data), processor, mode='train') |
|
self.valid_data = TaskDataset(os.path.join( |
|
args.data_dir, args.valid_data), processor, mode='dev') |
|
self.test_data = TaskDataset(os.path.join( |
|
args.data_dir, args.test_data), processor, mode='test') |
|
|
|
else: |
|
import datasets |
|
ds = datasets.load_dataset(args.dataset_name) |
|
self.train_data = ds['train'] |
|
self.valid_data = ds['validation'] |
|
self.test_data = ds['test'] |
|
self.save_hyperparameters(args) |
|
|
|
def train_dataloader(self): |
|
return DataLoader(self.train_data, shuffle=True, batch_size=self.train_batchsize, pin_memory=False, |
|
collate_fn=self.collator) |
|
|
|
def val_dataloader(self): |
|
return DataLoader(self.valid_data, shuffle=False, batch_size=self.valid_batchsize, pin_memory=False, |
|
collate_fn=self.collator) |
|
|
|
def predict_dataloader(self): |
|
return DataLoader(self.test_data, shuffle=False, batch_size=self.valid_batchsize, pin_memory=False, |
|
collate_fn=self.collator) |
|
|
|
|
|
class LitModel(pl.LightningModule): |
|
|
|
@staticmethod |
|
def add_model_specific_args(parent_args): |
|
parser = parent_args.add_argument_group('BaseModel') |
|
parser.add_argument('--markup', default='bios', type=str) |
|
parser.add_argument('--middle_prefix', default='I-', type=str) |
|
return parent_args |
|
|
|
def __init__(self, args, id2label): |
|
super().__init__() |
|
|
|
self.model = ZenForTokenClassification.from_pretrained(args.pretrained_model_path, num_labels=len(id2label)) |
|
self.seq_entity_score = SeqEntityScore(id2label, markup=args.markup, middle_prefix=args.middle_prefix) |
|
self.train_seq_entity_score = SeqEntityScore(id2label, markup=args.markup, middle_prefix=args.middle_prefix) |
|
self.id2label = id2label |
|
self.label2id = {v: k for k, v in id2label.items()} |
|
self.save_hyperparameters(args) |
|
|
|
def setup(self, stage) -> None: |
|
if stage == 'fit': |
|
train_loader = self.trainer._data_connector._train_dataloader_source.dataloader() |
|
|
|
|
|
if self.trainer.max_epochs > 0: |
|
world_size = self.trainer.world_size |
|
tb_size = self.hparams.train_batchsize * max(1, world_size) |
|
ab_size = self.trainer.accumulate_grad_batches |
|
self.total_steps = (len(train_loader.dataset) * |
|
self.trainer.max_epochs // tb_size) // ab_size |
|
else: |
|
self.total_steps = self.trainer.max_steps // self.trainer.accumulate_grad_batches |
|
|
|
print('Total steps: {}' .format(self.total_steps)) |
|
|
|
def training_step(self, batch, batch_idx): |
|
outputs = self.model(**batch) |
|
loss = outputs.loss |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.log('train_loss', loss) |
|
|
|
return loss |
|
|
|
def validation_step(self, batch, batch_idx): |
|
outputs = self.model(**batch) |
|
loss = outputs.loss |
|
logits = outputs.logits |
|
preds = torch.argmax(F.log_softmax(logits, dim=2), dim=2) |
|
preds = preds.detach().cpu().numpy() |
|
labels = batch['labels'].detach().cpu().numpy() |
|
num_labels = len(self.label2id) |
|
y_true = [] |
|
y_pred = [] |
|
for i, label in enumerate(labels): |
|
temp_1 = [] |
|
temp_2 = [] |
|
for j, m in enumerate(label): |
|
if j == 0: |
|
continue |
|
elif labels[i][j] == num_labels - 1: |
|
y_true.append(temp_1) |
|
y_pred.append(temp_2) |
|
break |
|
else: |
|
temp_1.append(self.id2label[labels[i][j]]) |
|
temp_2.append(self.id2label[preds[i][j]]) |
|
|
|
self.seq_entity_score.update(y_true, y_pred) |
|
self.log('val_loss', loss) |
|
|
|
def validation_epoch_end(self, outputs): |
|
|
|
score_dict, _ = self.seq_entity_score.result() |
|
if self.trainer._accelerator_connector.cluster_environment.global_rank() == 0: |
|
print('score_dict:\n', score_dict) |
|
|
|
self.seq_entity_score.reset() |
|
for k, v in score_dict.items(): |
|
self.log('val_{}'.format(k), v) |
|
|
|
def configure_optimizers(self): |
|
from fengshen.models.model_utils import configure_optimizers |
|
return configure_optimizers(self) |
|
|
|
|
|
class TaskModelCheckpoint: |
|
@staticmethod |
|
def add_argparse_args(parent_args): |
|
parser = parent_args.add_argument_group('BaseModel') |
|
|
|
parser.add_argument('--monitor', default='train_loss', type=str) |
|
parser.add_argument('--mode', default='min', type=str) |
|
parser.add_argument('--dirpath', default='./log/', type=str) |
|
parser.add_argument( |
|
'--filename', default='model-{epoch:02d}-{train_loss:.4f}', type=str) |
|
|
|
parser.add_argument('--save_top_k', default=3, type=float) |
|
parser.add_argument('--every_n_train_steps', default=100, type=float) |
|
parser.add_argument('--save_weights_only', default=True, type=bool) |
|
|
|
return parent_args |
|
|
|
def __init__(self, args): |
|
self.callbacks = ModelCheckpoint(monitor=args.monitor, |
|
save_top_k=args.save_top_k, |
|
mode=args.mode, |
|
every_n_train_steps=args.every_n_train_steps, |
|
save_weights_only=args.save_weights_only, |
|
dirpath=args.dirpath, |
|
filename=args.filename) |
|
|
|
|
|
def save_test(data, args, data_model): |
|
with open(args.output_save_path, 'w', encoding='utf-8') as f: |
|
idx = 0 |
|
for i in range(len(data)): |
|
batch = data[i] |
|
for sample in batch: |
|
tmp_result = dict() |
|
label_id = np.argmax(sample.numpy()) |
|
tmp_result['id'] = data_model.test_data.data[idx]['id'] |
|
tmp_result['label'] = data_model.id2label[label_id] |
|
json_data = json.dumps(tmp_result, ensure_ascii=False) |
|
f.write(json_data+'\n') |
|
idx += 1 |
|
print('save the result to '+args.output_save_path) |
|
|
|
|
|
def main(): |
|
total_parser = argparse.ArgumentParser("TASK NAME") |
|
total_parser.add_argument('--pretrained_model_path', default='', type=str) |
|
total_parser.add_argument('--output_save_path', |
|
default='./predict.json', type=str) |
|
|
|
total_parser = TaskDataModel.add_data_specific_args(total_parser) |
|
|
|
total_parser = pl.Trainer.add_argparse_args(total_parser) |
|
total_parser = TaskModelCheckpoint.add_argparse_args(total_parser) |
|
|
|
|
|
from fengshen.models.model_utils import add_module_args |
|
total_parser = add_module_args(total_parser) |
|
total_parser = LitModel.add_model_specific_args(total_parser) |
|
|
|
args = total_parser.parse_args() |
|
|
|
checkpoint_callback = TaskModelCheckpoint(args).callbacks |
|
lr_monitor = LearningRateMonitor(logging_interval='step') |
|
trainer = pl.Trainer.from_argparse_args(args, |
|
callbacks=[checkpoint_callback, lr_monitor] |
|
) |
|
|
|
data_model = TaskDataModel(args) |
|
id2label = data_model.id2label |
|
print('id2label:', id2label) |
|
model = LitModel(args, id2label) |
|
trainer.fit(model, data_model) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|