fclong's picture
Upload 396 files
8ebda9e
# -*- encoding: utf-8 -*-
'''
Copyright 2022 The International Digital Economy Academy (IDEA). CCNL team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
@File : qa_dataset.py
@Time : 2022/10/28 19:57
@Author : He Junqing
@Version : 1.0
@Contact : [email protected]
@License : (C)Copyright 2022-2023, CCNL-IDEA
'''
# here put the import lib
from dataclasses import dataclass
import numpy as np
import torch
from torch.nn.utils.rnn import pad_sequence
from fengshen.data.t5_dataloader.t5_gen_datasets import DialogDataset
class T5StyleDataset(DialogDataset):
@staticmethod
def add_data_specific_args(parent_args):
parser = parent_args.add_argument_group("Dataset")
parser.add_argument("--max_seq_length", default=512, type=int)
parser.add_argument("--max_knowledge_length", default=128, type=int)
parser.add_argument("--max_target_length", default=128, type=int)
return parent_args
def regular_tokenize(self, sample):
"""
sample.keys:question:str,context:stc, answer:[],idx:int,ans_span:[]
"""
plain_text = (
"question:"
+ sample["question"]
+ "knowledge:"
+ sample["context"][: self.max_knowledge_length]
)
l_text = len(plain_text)
ctx_len = self.max_seq_length - l_text - 1
if ctx_len > 0 and "history" in sample:
context = "[SEP]".join(sample["history"])
plain_text += "context:" + context
res_prefix = self.tokenizer.encode("answer:", add_special_tokens=False)
# res_prefix.tolist()
l_rp = len(res_prefix)
tokenized = self.tokenizer.encode(
plain_text,
add_special_tokens=False,
truncation=True,
max_length=self.max_seq_length - 2 - l_rp,
)
# tokenized.tolist()
tokenized += res_prefix
# add maskid
mask_id = self.tokenizer.convert_tokens_to_ids("<extra_id_0>")
tokenized.append(mask_id)
tokenized.append(self.eos_token_id)
# print(tokenized)
target_ids = self.tokenizer.encode(
"<extra_id_0>" + sample["answer"][0],
add_special_tokens=True,
truncation=True,
max_length=self.max_target_length,
)
# print(target_ids)
tokenized_sample = {}
tokenized_sample["input_ids"] = np.array(tokenized, dtype=np.int32)
tokenized_sample["attention_mask"] = np.ones(len(tokenized), dtype=np.int8)
tokenized_sample["labels"] = np.array(target_ids, dtype=np.int32)
tokenized_sample["idx"] = sample["idx"]
# print(tokenized_sample)
return tokenized_sample
@dataclass
class TextGenCollator:
'''
'''
config: None
pad_token_id: -100
decoder_start_token_id: 0
formator: str = 't5style'
def setup(self):
pass
def __call__(self, samples):
batch = {
k: [
torch.tensor(samples[i][k], dtype=torch.int64)
for i in range(len(samples))
]
for k in ["input_ids", "attention_mask", "labels"]
}
batch["idx"] = torch.tensor([samples[i]["idx"] for i in range(len(samples))])
# print(batch)
for k, v in batch.items():
if k != "labels" and k != "idx":
batch[k] = pad_sequence(
v, batch_first=True, padding_value=self.pad_token_id
)
elif k == "labels":
batch[k] = pad_sequence(v, batch_first=True, padding_value=-100)
batch["decoder_input_ids"] = torch.tensor(
self.shift_tokens_right(
batch["labels"], self.pad_token_id, self.decoder_start_token_id
),
dtype=torch.long,
)
return batch
def shift_tokens_right(
self, input_ids: np.array, pad_token_id: int, decoder_start_token_id: int
) -> np.ndarray:
"""
Shift input ids one token to the right.
"""
shifted_input_ids = np.zeros_like(input_ids)
shifted_input_ids[:, 1:] = input_ids[:, :-1]
shifted_input_ids[:, 0] = decoder_start_token_id
shifted_input_ids = np.where(
shifted_input_ids == -100, pad_token_id, shifted_input_ids
)
return shifted_input_ids
if __name__ == "__main__":
# test
import argparse
total_parser = argparse.ArgumentParser("DATASET parser")
total_parser.add_argument(
"--tokenizer_type",
default="t5_tokenizer",
choices=["bert_tokenizer", "t5_tokenizer"],
)
total_parser.add_argument("--preprocessing_num_workers", default="4", type=int)
total_parser.add_argument(
"--new_vocab_path",
default=None,
type=str,
)
total_parser.add_argument(
"--pretrained_model_path",
default="YOUR DOWNLOAD MODEL PATH",
)
total_parser.add_argument("--train_split_size", default=0.995, type=int)
total_parser.add_argument(
"--formator", default="t5style", choices=["t5style", "squad", "dialog"]
)
total_parser = TextGenCollator.add_data_specific_args(total_parser)
args = total_parser.parse_args()
args.train_data_path = "cmrc"
ds = T5StyleDataset("cmrc", args, "dev")
print(len(ds))
for i in range(10):
print(ds[i])
dl = TextGenCollator(args)
for i in range(5):
for batch in dl.val_dataloader():
print(batch)
print(batch["input_ids"])
print(batch["no_answer"])
print(batch["decoder_input_ids"])
print(batch["labels"])