fclong's picture
Upload 396 files
8ebda9e
#!/bin/bash
#SBATCH --job-name=pretrain_bart # create a short name for your job
#SBATCH --nodes=1 # node count
#SBATCH --ntasks-per-node=8 # number of tasks to run per node
#SBATCH --cpus-per-task=30 # cpu-cores per task (>1 if multi-threaded tasks)
#SBATCH --gres=gpu:8 # number of gpus per node
#SBATCH -o %x-%j.log # output and error log file names (%x for job id)
#SBATCH -x dgx050
MODEL_NAME=bert-1.3B
config_json="./$MODEL_NAME.ds_config.json"
((MASTER_PORT=$RANDOM%10000+40000))
echo $MASTER_PORT
ZERO_STAGE=2
MICRO_BATCH_SIZE=16
# Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size()
cat <<EOT > $config_json
{
"zero_optimization": {
"stage": $ZERO_STAGE,
"contiguous_gradients": true,
"overlap_comm": true,
"reduce_scatter": true,
"reduce_bucket_size": 2e8,
"allgather_bucket_size": 2e8
},
"fp16": {
"enabled": true,
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"optimizer": {
"params": {
"betas": [
0.9,
0.999
],
"eps": 1e-08,
"lr": 1e-04,
"weight_decay": 0.01
},
"type": "Adam"
},
"scheduler": {
"params": {
"warmup_max_lr": 1e-04,
"warmup_min_lr": 1e-05,
"total_num_steps": 536877,
"warmup_num_steps" : 50000
},
"type": "WarmupDecayLR"
},
"steps_per_print": 100,
"gradient_clipping": 1,
"train_micro_batch_size_per_gpu": $MICRO_BATCH_SIZE,
"zero_allow_untested_optimizer": false
}
EOT
export PL_DEEPSPEED_CONFIG_PATH=$config_json
export TORCH_EXTENSIONS_DIR=/home/wuziwei/torch_extendsions
DATA_ARGS="\
--datasets_name wudao_180g \
--num_workers 16 \
--train_batchsize $MICRO_BATCH_SIZE
"
MODEL_ARGS="\
--model_path /data0/wuziwei/codes/Fengshenbang-LM/fengshen/examples/pretrain_bert/wudao180g_bert_base \
--learning_rate 1e-5 \
--weight_decay 0.01 \
--warmup 0.001 \
"
MODEL_CHECKPOINT_ARGS="\
--monitor train_loss \
--save_top_k 3 \
--mode min \
--save_last \
--every_n_train_steps 5000 \
--dirpath /data0/wuziwei/codes/Fengshenbang-LM/fengshen/examples/pretrain_bert/$MODEL_NAME \
--filename model-{step:02d}-{train_loss:.4f} \
"
TRAINER_ARGS="\
--gradient_clip_val 1.0 \
--max_epochs 1 \
--gpus 2 \
--num_nodes 1 \
--strategy ddp \
--log_every_n_steps 100 \
--val_check_interval 0.1 \
--check_val_every_n_epoch 1 \
--accumulate_grad_batches 1 \
--resume_from_checkpoint /data0/wuziwei/codes/Fengshenbang-LM/fengshen/examples/pretrain_bert/$MODEL_NAME/last.ckpt \
--default_root_dir /data0/wuziwei/codes/Fengshenbang-LM/fengshen/examples/pretrain_bert/$MODEL_NAME \
"
export options=" \
$DATA_ARGS \
$MODEL_ARGS \
$MODEL_CHECKPOINT_ARGS \
$TRAINER_ARGS \
"
export SCRIPT_PATH=/data0/wuziwei/codes/Fengshenbang-LM/fengshen/examples/pretrain_bert/pretrain_bert.py
bash -c 'python3 $SCRIPT_PATH $options'