|
|
|
''' |
|
Copyright 2022 The International Digital Economy Academy (IDEA). CCNL team. All rights reserved. |
|
Licensed under the Apache License, Version 2.0 (the "License"); |
|
you may not use this file except in compliance with the License. |
|
You may obtain a copy of the License at |
|
|
|
http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
Unless required by applicable law or agreed to in writing, software |
|
distributed under the License is distributed on an "AS IS" BASIS, |
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
@File : generate.py |
|
@Time : 2022/11/04 19:17 |
|
@Author : Liang Yuxin |
|
@Version : 1.0 |
|
@Contact : [email protected] |
|
@License : (C)Copyright 2022-2023, CCNL-IDEA |
|
''' |
|
|
|
|
|
import torch |
|
from fengshen.models.DAVAE.DAVAEModel import DAVAEModel |
|
from transformers import BertTokenizer,T5Tokenizer |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
encoder_tokenizer = BertTokenizer.from_pretrained("IDEA-CCNL/Randeng-DAVAE-1.2B-General-Chinese") |
|
decoder_tokenizer = T5Tokenizer.from_pretrained("IDEA-CCNL/Randeng-DAVAE-1.2B-General-Chinese", eos_token = '<|endoftext|>', pad_token = '<pad>',extra_ids=0) |
|
decoder_tokenizer.add_special_tokens({'bos_token':'<bos>'}) |
|
vae_model = DAVAEModel.from_pretrained("IDEA-CCNL/Randeng-DAVAE-1.2B-General-Chinese").to(device) |
|
input_texts = [ |
|
"针对电力系统中的混沌振荡对整个互联电网的危害问题,提出了一种基于非线性光滑函数的滑模控制方法.", |
|
"超市面积不算大.挺方便附近的居民购买的. 生活用品也比较齐全.价格适用中.", |
|
] |
|
output_texts = vae_model.simulate_batch(encoder_tokenizer,decoder_tokenizer,input_texts) |
|
print(output_texts) |
|
|