File size: 54,948 Bytes
8ebda9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
# coding: utf-8
# Copyright 2019 Sinovation Ventures AI Institute
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This file is partially derived from the code at
# https://github.com/huggingface/transformers/tree/master/transformers
#
# Original copyright notice:
#
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch ZEN model classes."""

from __future__ import absolute_import, division, print_function, unicode_literals
import copy
import logging
import math
import os
import sys

import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers import PreTrainedModel

from .configuration_zen1 import ZenConfig

logger = logging.getLogger(__name__)

PRETRAINED_MODEL_ARCHIVE_MAP = {
    'IDEA-CCNL/Erlangshen-ZEN1-224M-Chinese': 'https://huggingface.co/IDEA-CCNL/Erlangshen-ZEN1-224M-Chinese/resolve/main/pytorch_model.bin',
}
PRETRAINED_CONFIG_ARCHIVE_MAP = {
    'IDEA-CCNL/Erlangshen-ZEN1-224M-Chinese': 'https://huggingface.co/IDEA-CCNL/Erlangshen-ZEN1-224M-Chinese/resolve/main/config.json',
}
BERT_CONFIG_NAME = 'bert_config.json'
TF_WEIGHTS_NAME = 'model.ckpt'


def prune_linear_layer(layer, index, dim=0):
    """ Prune a linear layer (a model parameters) to keep only entries in index.
        Return the pruned layer as a new layer with requires_grad=True.
        Used to remove heads.
    """
    index = index.to(layer.weight.device)
    W = layer.weight.index_select(dim, index).clone().detach()
    if layer.bias is not None:
        if dim == 1:
            b = layer.bias.clone().detach()
        else:
            b = layer.bias[index].clone().detach()
    new_size = list(layer.weight.size())
    new_size[dim] = len(index)
    new_layer = nn.Linear(new_size[1], new_size[0], bias=layer.bias is not None).to(layer.weight.device)
    new_layer.weight.requires_grad = False
    new_layer.weight.copy_(W.contiguous())
    new_layer.weight.requires_grad = True
    if layer.bias is not None:
        new_layer.bias.requires_grad = False
        new_layer.bias.copy_(b.contiguous())
        new_layer.bias.requires_grad = True
    return new_layer


def load_tf_weights_in_bert(model, tf_checkpoint_path):
    """ Load tf checkpoints in a pytorch model
    """
    try:
        import re
        import numpy as np
        import tensorflow as tf
    except ImportError:
        print("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
              "https://www.tensorflow.org/install/ for installation instructions.")
        raise
    tf_path = os.path.abspath(tf_checkpoint_path)
    print("Converting TensorFlow checkpoint from {}".format(tf_path))
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
        print("Loading TF weight {} with shape {}".format(name, shape))
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
        arrays.append(array)

    for name, array in zip(names, arrays):
        name = name.split('/')
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
        if any(n in ["adam_v", "adam_m", "global_step"] for n in name):
            print("Skipping {}".format("/".join(name)))
            continue
        pointer = model
        for m_name in name:
            if re.fullmatch(r'[A-Za-z]+_\d+', m_name):
                lname = re.split(r'_(\d+)', m_name)
            else:
                lname = [m_name]
            if lname[0] == 'kernel' or lname[0] == 'gamma':
                pointer = getattr(pointer, 'weight')
            elif lname[0] == 'output_bias' or lname[0] == 'beta':
                pointer = getattr(pointer, 'bias')
            elif lname[0] == 'output_weights':
                pointer = getattr(pointer, 'weight')
            elif lname[0] == 'squad':
                pointer = getattr(pointer, 'classifier')
            else:
                try:
                    pointer = getattr(pointer, lname[0])
                except AttributeError:
                    print("Skipping {}".format("/".join(name)))
                    continue
            if len(lname) >= 2:
                num = int(lname[1])
                pointer = pointer[num]
        if m_name[-11:] == '_embeddings':
            pointer = getattr(pointer, 'weight')
        elif m_name == 'kernel':
            array = np.transpose(array)
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        print("Initialize PyTorch weight {}".format(name))
        pointer.data = torch.from_numpy(array)
    return model


def gelu(x):
    """Implementation of the gelu activation function.
        For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
        0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
        Also see https://arxiv.org/abs/1606.08415
    """
    return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))


def swish(x):
    return x * torch.sigmoid(x)


ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish}


try:
    # from apex.normalization.fused_layer_norm import FusedLayerNorm as BertLayerNorm
    from torch.nn import LayerNorm as BertLayerNorm
except ImportError:
    logger.info("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex .")

    class BertLayerNorm(nn.Module):
        def __init__(self, hidden_size, eps=1e-12):
            """Construct a layernorm module in the TF style (epsilon inside the square root).
            """
            super(BertLayerNorm, self).__init__()
            self.weight = nn.Parameter(torch.ones(hidden_size))
            self.bias = nn.Parameter(torch.zeros(hidden_size))
            self.variance_epsilon = eps

        def forward(self, x):
            u = x.mean(-1, keepdim=True)
            s = (x - u).pow(2).mean(-1, keepdim=True)
            x = (x - u) / torch.sqrt(s + self.variance_epsilon)
            return self.weight * x + self.bias


class BertEmbeddings(nn.Module):
    """Construct the embeddings from word, position and token_type embeddings.
    """

    def __init__(self, config):
        super(BertEmbeddings, self).__init__()
        self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0)
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, input_ids, token_type_ids=None):
        seq_length = input_ids.size(1)
        position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
        position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)

        words_embeddings = self.word_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)

        embeddings = words_embeddings + position_embeddings + token_type_embeddings
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings


class BertWordEmbeddings(nn.Module):
    """Construct the embeddings from ngram, position and token_type embeddings.
    """

    def __init__(self, config):
        super(BertWordEmbeddings, self).__init__()
        self.word_embeddings = nn.Embedding(config.word_size, config.hidden_size, padding_idx=0)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, input_ids, token_type_ids=None):
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)

        words_embeddings = self.word_embeddings(input_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)

        embeddings = words_embeddings + token_type_embeddings
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings


class BertSelfAttention(nn.Module):
    def __init__(self, config, output_attentions=False, keep_multihead_output=False):
        super(BertSelfAttention, self).__init__()
        if config.hidden_size % config.num_attention_heads != 0:
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
                "heads (%d)" % (config.hidden_size, config.num_attention_heads))
        self.output_attentions = output_attentions
        self.keep_multihead_output = keep_multihead_output
        self.multihead_output = None

        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(self, hidden_states, attention_mask, head_mask=None):
        mixed_query_layer = self.query(hidden_states)
        mixed_key_layer = self.key(hidden_states)
        mixed_value_layer = self.value(hidden_states)

        query_layer = self.transpose_for_scores(mixed_query_layer)
        key_layer = self.transpose_for_scores(mixed_key_layer)
        value_layer = self.transpose_for_scores(mixed_value_layer)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
        attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

        context_layer = torch.matmul(attention_probs, value_layer)
        if self.keep_multihead_output:
            self.multihead_output = context_layer
            self.multihead_output.retain_grad()

        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(*new_context_layer_shape)
        if self.output_attentions:
            return attention_probs, context_layer
        return context_layer


class BertSelfOutput(nn.Module):
    def __init__(self, config):
        super(BertSelfOutput, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class BertAttention(nn.Module):
    def __init__(self, config, output_attentions=False, keep_multihead_output=False):
        super(BertAttention, self).__init__()
        self.output_attentions = output_attentions
        self.self = BertSelfAttention(config, output_attentions=output_attentions,
                                      keep_multihead_output=keep_multihead_output)
        self.output = BertSelfOutput(config)

    def prune_heads(self, heads):
        if len(heads) == 0:
            return
        mask = torch.ones(self.self.num_attention_heads, self.self.attention_head_size)
        for head in heads:
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
        # Prune linear layers
        self.self.query = prune_linear_layer(self.self.query, index)
        self.self.key = prune_linear_layer(self.self.key, index)
        self.self.value = prune_linear_layer(self.self.value, index)
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
        # Update hyper params
        self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
        self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads

    def forward(self, input_tensor, attention_mask, head_mask=None):
        self_output = self.self(input_tensor, attention_mask, head_mask)
        if self.output_attentions:
            attentions, self_output = self_output
        attention_output = self.output(self_output, input_tensor)
        if self.output_attentions:
            return attentions, attention_output
        return attention_output


class BertIntermediate(nn.Module):
    def __init__(self, config):
        super(BertIntermediate, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
        # if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
        if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


class BertOutput(nn.Module):
    def __init__(self, config):
        super(BertOutput, self).__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class BertLayer(nn.Module):
    def __init__(self, config, output_attentions=False, keep_multihead_output=False):
        super(BertLayer, self).__init__()
        self.output_attentions = output_attentions
        self.attention = BertAttention(config, output_attentions=output_attentions,
                                       keep_multihead_output=keep_multihead_output)
        self.intermediate = BertIntermediate(config)
        self.output = BertOutput(config)

    def forward(self, hidden_states, attention_mask, head_mask=None):
        attention_output = self.attention(hidden_states, attention_mask, head_mask)
        if self.output_attentions:
            attentions, attention_output = attention_output
        intermediate_output = self.intermediate(attention_output)
        layer_output = self.output(intermediate_output, attention_output)
        if self.output_attentions:
            return attentions, layer_output
        return layer_output


class ZenEncoder(nn.Module):
    def __init__(self, config, output_attentions=False, keep_multihead_output=False):
        super(ZenEncoder, self).__init__()
        self.output_attentions = output_attentions
        layer = BertLayer(config, output_attentions=output_attentions,
                          keep_multihead_output=keep_multihead_output)
        self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_layers)])
        self.word_layers = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_word_layers)])
        self.num_hidden_word_layers = config.num_hidden_word_layers

    def forward(self, hidden_states, ngram_hidden_states, ngram_position_matrix, attention_mask,
                ngram_attention_mask,
                output_all_encoded_layers=True, head_mask=None):
        # Need to check what is the attention masking doing here
        all_encoder_layers = []
        all_attentions = []
        num_hidden_ngram_layers = self.num_hidden_word_layers
        for i, layer_module in enumerate(self.layer):
            hidden_states = layer_module(hidden_states, attention_mask, head_mask[i])
            if i < num_hidden_ngram_layers:
                ngram_hidden_states = self.word_layers[i](ngram_hidden_states, ngram_attention_mask, head_mask[i])
                if self.output_attentions:
                    ngram_attentions, ngram_hidden_states = ngram_hidden_states
            if self.output_attentions:
                attentions, hidden_states = hidden_states
                all_attentions.append(attentions)
            hidden_states += torch.bmm(ngram_position_matrix.float(), ngram_hidden_states.float())
            if output_all_encoded_layers:
                all_encoder_layers.append(hidden_states)
        if not output_all_encoded_layers:
            all_encoder_layers.append(hidden_states)
        if self.output_attentions:
            return all_attentions, all_encoder_layers
        return all_encoder_layers


class BertPooler(nn.Module):
    def __init__(self, config):
        super(BertPooler, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


class BertPredictionHeadTransform(nn.Module):
    def __init__(self, config):
        super(BertPredictionHeadTransform, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        # if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
        if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2):
            self.transform_act_fn = ACT2FN[config.hidden_act]
        else:
            self.transform_act_fn = config.hidden_act
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.transform_act_fn(hidden_states)
        hidden_states = self.LayerNorm(hidden_states)
        return hidden_states


class BertLMPredictionHead(nn.Module):
    def __init__(self, config, bert_model_embedding_weights):
        super(BertLMPredictionHead, self).__init__()
        self.transform = BertPredictionHeadTransform(config)

        # The output weights are the same as the input embeddings, but there is
        # an output-only bias for each token.
        self.decoder = nn.Linear(bert_model_embedding_weights.size(1),
                                 bert_model_embedding_weights.size(0),
                                 bias=False)
        self.decoder.weight = bert_model_embedding_weights
        self.bias = nn.Parameter(torch.zeros(bert_model_embedding_weights.size(0)))

    def forward(self, hidden_states):
        hidden_states = self.transform(hidden_states)
        hidden_states = self.decoder(hidden_states) + self.bias
        return hidden_states


class ZenOnlyMLMHead(nn.Module):
    def __init__(self, config, bert_model_embedding_weights):
        super(ZenOnlyMLMHead, self).__init__()
        self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights)

    def forward(self, sequence_output):
        prediction_scores = self.predictions(sequence_output)
        return prediction_scores


class ZenOnlyNSPHead(nn.Module):
    def __init__(self, config):
        super(ZenOnlyNSPHead, self).__init__()
        self.seq_relationship = nn.Linear(config.hidden_size, 2)

    def forward(self, pooled_output):
        seq_relationship_score = self.seq_relationship(pooled_output)
        return seq_relationship_score


class ZenPreTrainingHeads(nn.Module):
    def __init__(self, config, bert_model_embedding_weights):
        super(ZenPreTrainingHeads, self).__init__()
        self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights)
        self.seq_relationship = nn.Linear(config.hidden_size, 2)

    def forward(self, sequence_output, pooled_output):
        prediction_scores = self.predictions(sequence_output)
        seq_relationship_score = self.seq_relationship(pooled_output)
        return prediction_scores, seq_relationship_score


class ZenPreTrainedModel(PreTrainedModel):
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
    config_class = ZenConfig
    base_model_prefix = "IDEA-CCNL/Erlangshen-ZEN1-224M-Chinese"
    supports_gradient_checkpointing = True
    _keys_to_ignore_on_load_missing = [r"position_ids"]

    def _init_weights(self, module):
        """Initialize the weights"""
        if isinstance(module, nn.Linear):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(
                mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(
                mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)


class ZenModel(ZenPreTrainedModel):
    """ZEN model ("BERT-based Chinese (Z) text encoder Enhanced by N-gram representations").

    Params:
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`.
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
        `input_ngram_ids`: input_ids of ngrams.
        `ngram_token_type_ids`: token_type_ids of ngrams.
        `ngram_attention_mask`: attention_mask of ngrams.
        `ngram_position_matrix`: position matrix of ngrams.


    Outputs: Tuple of (encoded_layers, pooled_output)
        `encoded_layers`: controled by `output_all_encoded_layers` argument:
            - `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end
                of each attention block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each
                encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size],
            - `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding
                to the last attention block of shape [batch_size, sequence_length, hidden_size],
        `pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a
            classifier pretrained on top of the hidden state associated to the first character of the
            input (`CLS`) to train on the Next-Sentence task (see BERT's paper).

    """

    def __init__(self, config, output_attentions=False, keep_multihead_output=False):
        super(ZenModel, self).__init__(config)
        self.output_attentions = output_attentions
        self.embeddings = BertEmbeddings(config)
        self.word_embeddings = BertWordEmbeddings(config)
        self.encoder = ZenEncoder(config, output_attentions=output_attentions,
                                  keep_multihead_output=keep_multihead_output)
        self.pooler = BertPooler(config)
        self.init_weights()

    def prune_heads(self, heads_to_prune):
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

    def get_multihead_outputs(self):
        """ Gather all multi-head outputs.
            Return: list (layers) of multihead module outputs with gradients
        """
        return [layer.attention.self.multihead_output for layer in self.encoder.layer]

    def forward(self, input_ids,
                input_ngram_ids,
                ngram_position_matrix,
                token_type_ids=None,
                ngram_token_type_ids=None,
                attention_mask=None,
                ngram_attention_mask=None,
                output_all_encoded_layers=True,
                head_mask=None):
        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids)
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)

        if ngram_attention_mask is None:
            ngram_attention_mask = torch.ones_like(input_ngram_ids)
        if ngram_token_type_ids is None:
            ngram_token_type_ids = torch.zeros_like(input_ngram_ids)

        # We create a 3D attention mask from a 2D tensor mask.
        # Sizes are [batch_size, 1, 1, to_seq_length]
        # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
        # this attention mask is more simple than the triangular masking of causal attention
        # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
        extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
        extended_ngram_attention_mask = ngram_attention_mask.unsqueeze(1).unsqueeze(2)

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
        extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype)  # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0

        extended_ngram_attention_mask = extended_ngram_attention_mask.to(dtype=next(self.parameters()).dtype)
        extended_ngram_attention_mask = (1.0 - extended_ngram_attention_mask) * -10000.0

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        if head_mask is not None:
            if head_mask.dim() == 1:
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
                head_mask = head_mask.expand_as(self.config.num_hidden_layers, -1, -1, -1, -1)
            elif head_mask.dim() == 2:
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(
                    -1)  # We can specify head_mask for each layer
            head_mask = head_mask.to(
                dtype=next(self.parameters()).dtype)  # switch to fload if need + fp16 compatibility
        else:
            head_mask = [None] * self.config.num_hidden_layers

        embedding_output = self.embeddings(input_ids, token_type_ids)
        ngram_embedding_output = self.word_embeddings(input_ngram_ids, ngram_token_type_ids)

        encoded_layers = self.encoder(embedding_output,
                                      ngram_embedding_output,
                                      ngram_position_matrix,
                                      extended_attention_mask,
                                      extended_ngram_attention_mask,
                                      output_all_encoded_layers=output_all_encoded_layers,
                                      head_mask=head_mask)
        if self.output_attentions:
            all_attentions, encoded_layers = encoded_layers
        sequence_output = encoded_layers[-1]
        pooled_output = self.pooler(sequence_output)
        if not output_all_encoded_layers:
            encoded_layers = encoded_layers[-1]
        if self.output_attentions:
            return all_attentions, encoded_layers, pooled_output
        return encoded_layers, pooled_output


class ZenForPreTraining(ZenPreTrainedModel):
    """ZEN model with pre-training heads.
    This module comprises the ZEN model followed by the two pre-training heads:
        - the masked language modeling head, and
        - the next sentence classification head.

    Params:
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `masked_lm_labels`: optional masked language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
            with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., vocab_size]
        `next_sentence_label`: optional next sentence classification loss: torch.LongTensor of shape [batch_size]
            with indices selected in [0, 1].
            0 => next sentence is the continuation, 1 => next sentence is a random sentence.
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
        `input_ngram_ids`: input_ids of ngrams.
        `ngram_token_type_ids`: token_type_ids of ngrams.
        `ngram_attention_mask`: attention_mask of ngrams.
        `ngram_position_matrix`: position matrix of ngrams.

    Outputs:
        if `masked_lm_labels` and `next_sentence_label` are not `None`:
            Outputs the total_loss which is the sum of the masked language modeling loss and the next
            sentence classification loss.
        if `masked_lm_labels` or `next_sentence_label` is `None`:
            Outputs a tuple comprising
            - the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and
            - the next sentence classification logits of shape [batch_size, 2].

    """

    def __init__(self, config, output_attentions=False, keep_multihead_output=False):
        super(ZenForPreTraining, self).__init__(config)
        self.output_attentions = output_attentions
        self.bert = ZenModel(config, output_attentions=output_attentions,
                             keep_multihead_output=keep_multihead_output)
        self.cls = ZenPreTrainingHeads(config, self.bert.embeddings.word_embeddings.weight)
        self.init_weights()

    def forward(self, input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids=None,
                ngram_token_type_ids=None,
                attention_mask=None,
                ngram_attention_mask=None,
                masked_lm_labels=None,
                next_sentence_label=None, head_mask=None):
        outputs = self.bert(input_ids,
                            input_ngram_ids,
                            ngram_position_matrix,
                            token_type_ids,
                            ngram_token_type_ids,
                            attention_mask,
                            ngram_attention_mask,
                            output_all_encoded_layers=False, head_mask=head_mask)
        if self.output_attentions:
            all_attentions, sequence_output, pooled_output = outputs
        else:
            sequence_output, pooled_output = outputs
        prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)

        if masked_lm_labels is not None and next_sentence_label is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
            next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
            total_loss = masked_lm_loss + next_sentence_loss
            return total_loss
        elif self.output_attentions:
            return all_attentions, prediction_scores, seq_relationship_score
        return prediction_scores, seq_relationship_score


class ZenForMaskedLM(ZenPreTrainedModel):
    """ZEN model with the masked language modeling head.
    This module comprises the ZEN model followed by the masked language modeling head.

    Params:
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `masked_lm_labels`: masked language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
            with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., vocab_size]
        `head_mask`: an optional torch.LongTensor of shape [num_heads] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
        `input_ngram_ids`: input_ids of ngrams.
        `ngram_token_type_ids`: token_type_ids of ngrams.
        `ngram_attention_mask`: attention_mask of ngrams.
        `ngram_position_matrix`: position matrix of ngrams.

    Outputs:
        if `masked_lm_labels` is  not `None`:
            Outputs the masked language modeling loss.
        if `masked_lm_labels` is `None`:
            Outputs the masked language modeling logits of shape [batch_size, sequence_length, vocab_size].

    """

    def __init__(self, config, output_attentions=False, keep_multihead_output=False):
        super(ZenForMaskedLM, self).__init__(config)
        self.output_attentions = output_attentions
        self.bert = ZenModel(config, output_attentions=output_attentions,
                             keep_multihead_output=keep_multihead_output)
        self.cls = ZenOnlyMLMHead(config, self.bert.embeddings.word_embeddings.weight)
        self.init_weights()

    def forward(self, input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids=None, attention_mask=None, masked_lm_labels=None, head_mask=None):
        outputs = self.bert(input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids, attention_mask,
                            output_all_encoded_layers=False,
                            head_mask=head_mask)
        if self.output_attentions:
            all_attentions, sequence_output, _ = outputs
        else:
            sequence_output, _ = outputs
        prediction_scores = self.cls(sequence_output)

        if masked_lm_labels is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
            return masked_lm_loss
        elif self.output_attentions:
            return all_attentions, prediction_scores
        return prediction_scores


class ZenForNextSentencePrediction(ZenPreTrainedModel):
    """ZEN model with next sentence prediction head.
    This module comprises the ZEN model followed by the next sentence classification head.

    Params:
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `next_sentence_label`: next sentence classification loss: torch.LongTensor of shape [batch_size]
            with indices selected in [0, 1].
            0 => next sentence is the continuation, 1 => next sentence is a random sentence.
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
        `input_ngram_ids`: input_ids of ngrams.
        `ngram_token_type_ids`: token_type_ids of ngrams.
        `ngram_attention_mask`: attention_mask of ngrams.
        `ngram_position_matrix`: position matrix of ngrams.

    Outputs:
        if `next_sentence_label` is not `None`:
            Outputs the total_loss which is the sum of the masked language modeling loss and the next
            sentence classification loss.
        if `next_sentence_label` is `None`:
            Outputs the next sentence classification logits of shape [batch_size, 2].

    """

    def __init__(self, config, output_attentions=False, keep_multihead_output=False):
        super(ZenForNextSentencePrediction, self).__init__(config)
        self.output_attentions = output_attentions
        self.bert = ZenModel(config, output_attentions=output_attentions,
                             keep_multihead_output=keep_multihead_output)
        self.cls = ZenOnlyNSPHead(config)
        self.init_weights()

    def forward(self, input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids=None, attention_mask=None, next_sentence_label=None, head_mask=None):
        outputs = self.bert(input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids, attention_mask,
                            output_all_encoded_layers=False,
                            head_mask=head_mask)
        if self.output_attentions:
            all_attentions, _, pooled_output = outputs
        else:
            _, pooled_output = outputs
        seq_relationship_score = self.cls(pooled_output)

        if next_sentence_label is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
            next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
            return next_sentence_loss
        elif self.output_attentions:
            return all_attentions, seq_relationship_score
        return seq_relationship_score


class ZenForSequenceClassification(ZenPreTrainedModel):
    """ZEN model for classification.
    This module is composed of the ZEN model with a linear layer on top of
    the pooled output.

    Params:
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
        `num_labels`: the number of classes for the classifier. Default = 2.

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary. Items in the batch should begin with the special "CLS" token. (see the tokens preprocessing logic in the scripts
            `extract_features.py`, `run_classifier.py` and `run_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `labels`: labels for the classification output: torch.LongTensor of shape [batch_size]
            with indices selected in [0, ..., num_labels].
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
        `input_ngram_ids`: input_ids of ngrams.
        `ngram_token_type_ids`: token_type_ids of ngrams.
        `ngram_attention_mask`: attention_mask of ngrams.
        `ngram_position_matrix`: position matrix of ngrams.

    Outputs:
        if `labels` is not `None`:
            Outputs the CrossEntropy classification loss of the output with the labels.
        if `labels` is `None`:
            Outputs the classification logits of shape [batch_size, num_labels].

    """

    def __init__(self, config, num_labels=2, output_attentions=False, keep_multihead_output=False):
        # super().__init__(config, num_labels, output_attentions, keep_multihead_output)
        super().__init__(config)
        self.config = config
        self.output_attentions = output_attentions
        self.num_labels = config.num_labels
        self.bert = ZenModel(config, output_attentions=output_attentions,
                             keep_multihead_output=keep_multihead_output)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, self.num_labels)
        self.init_weights()

    def forward(self, input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids=None, attention_mask=None, labels=None, head_mask=None):
        outputs = self.bert(input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids, attention_mask,
                            output_all_encoded_layers=False,
                            head_mask=head_mask)
        if self.output_attentions:
            all_attentions, _, pooled_output = outputs
        else:
            _, pooled_output = outputs
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)

        loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            # print('logits***************', logits, labels)
            # breakpoint()
            loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            return loss, logits
        elif self.output_attentions:
            return all_attentions, logits
        return loss, logits


class ZenForTokenClassification(ZenPreTrainedModel):
    """ZEN model for token-level classification.
    This module is composed of the ZEN model with a linear layer on top of
    the full hidden state of the last layer.

    Params:
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
        `num_labels`: the number of classes for the classifier. Default = 2.

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `labels`: labels for the classification output: torch.LongTensor of shape [batch_size, sequence_length]
            with indices selected in [0, ..., num_labels].
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
        `input_ngram_ids`: input_ids of ngrams.
        `ngram_token_type_ids`: token_type_ids of ngrams.
        `ngram_attention_mask`: attention_mask of ngrams.
        `ngram_position_matrix`: position matrix of ngrams.

    Outputs:
        if `labels` is not `None`:
            Outputs the CrossEntropy classification loss of the output with the labels.
        if `labels` is `None`:
            Outputs the classification logits of shape [batch_size, sequence_length, num_labels].

    """

    def __init__(self, config, num_labels=2, output_attentions=False, keep_multihead_output=False):
        super().__init__(config)
        self.output_attentions = output_attentions
        self.num_labels = config.num_labels
        self.bert = ZenModel(config, output_attentions=output_attentions,
                             keep_multihead_output=keep_multihead_output)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)
        self.init_weights()

    def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, valid_ids=None,
                attention_mask_label=None, ngram_ids=None, ngram_positions=None, head_mask=None):
        outputs = self.bert(input_ids, ngram_ids, ngram_positions, token_type_ids, attention_mask,
                            output_all_encoded_layers=False, head_mask=head_mask)
        if self.output_attentions:
            all_attentions, sequence_output, _ = outputs
        else:
            sequence_output, _ = outputs

        batch_size, max_len, feat_dim = sequence_output.shape
        valid_output = torch.zeros(batch_size, max_len, feat_dim, dtype=torch.float32, device=input_ids.device)

        if self.num_labels == 38:
            # just for POS to filter/mask input_ids=0
            for i in range(batch_size):
                temp = sequence_output[i][valid_ids[i] == 1]
                valid_output[i][:temp.size(0)] = temp
        else:
            valid_output = sequence_output

        sequence_output = self.dropout(valid_output)
        logits = self.classifier(sequence_output)

        loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss(ignore_index=0)
            # Only keep active parts of the loss
            attention_mask_label = None
            if attention_mask_label is not None:
                active_loss = attention_mask_label.view(-1) == 1
                active_logits = logits.view(-1, self.num_labels)[active_loss]
                active_labels = labels.view(-1)[active_loss]
                loss = loss_fct(active_logits, active_labels)
            else:
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            return loss, logits
        else:
            return loss, logits