File size: 13,253 Bytes
8ebda9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
from pytorch_lightning import (
LightningModule,
Trainer,
)
from pytorch_lightning.callbacks import (
LearningRateMonitor,
)
from fengshen.models.clip import (
TaiyiCLIPModel,
TaiyiCLIPProcessor,
)
from fengshen.models.model_utils import (
add_module_args,
configure_optimizers,
get_total_steps,
)
import torch
import torch.nn.functional as F
import argparse
import math
from fengshen.data.universal_datamodule import UniversalDataModule
from fengshen.data.taiyi_stable_diffusion_datasets.taiyi_datasets import add_data_args, load_data
from fengshen.utils.universal_checkpoint import UniversalCheckpoint
import os
import numpy as np
from torchvision.transforms import Normalize, Compose, RandomResizedCrop, InterpolationMode, ToTensor
OPENAI_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073)
OPENAI_DATASET_STD = (0.26862954, 0.26130258, 0.27577711)
class Collator():
def __init__(self, args, processor):
self.processor = processor
self.seq_length = args.seq_length
self.transforms = Compose([
ToTensor(),
RandomResizedCrop(args.resolution, scale=(0.9, 1.0),
interpolation=InterpolationMode.BICUBIC),
Normalize(mean=OPENAI_DATASET_MEAN, std=OPENAI_DATASET_STD),
])
def __call__(self, inputs):
max_length = min(self.seq_length, max([len(i['caption']) for i in inputs]))
images = []
texts = []
labels = []
for i in inputs:
# instance_image = Image.open(i['img_path'])
# instance_image = jpeg4py.JPEG(i['img_path']).decode()
instance_image = np.load(i['npy_path'])
images.append(self.transforms(instance_image))
texts.append(i['caption'])
labels.append(i['labels'] if 'labels' in i else -100)
# images_input = self.processor(images=images, return_tensors="pt")
texts_input = self.processor(text=texts,
max_length=max_length,
padding='max_length',
truncation=True,
return_tensors='pt')
# return images_input, texts_input, labels
return {'pixel_values': torch.stack(images)}, texts_input, labels
class TaiyiCLIP(LightningModule):
@staticmethod
def add_module_specific_args(parent_parser):
parser = parent_parser.add_argument_group('Taiyi CLIP')
parser.add_argument('--loss_type', choices=['local', 'global'], default='local')
parser.add_argument('--seq_length', default=77)
parser.add_argument('--gather_with_grad', default=False, action='store_true')
parser.add_argument('--freeze_image_tower', default=False, action='store_true')
return parent_parser
def __init__(self, args, **kwargs) -> None:
super().__init__()
self.save_hyperparameters(args)
self.model = TaiyiCLIPModel.from_pretrained(args.model_path)
self.processor = TaiyiCLIPProcessor.from_pretrained(args.model_path)
self.local_loss = args.loss_type == 'local'
if args.freeze_image_tower:
for param in self.model.vision_model.parameters():
param.requires_grad = False
self.model.visual_projection.requires_grad = False
# cache
self.cache_labels = True
self.prev_num_logits = 0
self.labels = {}
def setup(self, stage) -> None:
if stage == 'fit':
self.total_steps = get_total_steps(self.trainer, self.hparams)
print('Total steps: {}' .format(self.total_steps))
elif stage == 'validate':
self.total_steps = 100
def configure_optimizers(self):
return configure_optimizers(self)
def forward(self, image, text):
assert image is not None
assert text is not None
image_features = self.model.get_image_features(**image)
text_features = self.model.get_text_features(**text)
image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True)
text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)
return image_features, text_features, self.model.logit_scale.exp()
def gather_features(self, features):
if self.trainer.world_size == 1:
return features
all_features = self.all_gather(
features, sync_grads=self.hparams.gather_with_grad)
if not self.local_loss and not self.gather_with_grad:
# 如果是全局loss,并且不需要梯度,需要把梯度更新回tensor
all_features[self.global_rank] = features
all_features = all_features.view(-1, all_features.shape[-1])
return all_features
def clip_loss(self, image_features, text_features, logit_scale):
logits_per_image = None
# 如果我冻住VIT并且是local_loss,那么我只需要自己的这部分text feature就行
# 因为根本不需要image2text的feature训练VIT
if self.hparams.freeze_image_tower and self.local_loss:
all_text_features = None
else:
all_text_features = self.gather_features(
text_features)
all_image_features = self.gather_features(
image_features)
if self.local_loss:
if all_text_features is not None:
logits_per_image = logit_scale * image_features @ all_text_features.T
logits_per_text = logit_scale * text_features @ all_image_features.T
else:
# 如果是global_loss,那all_text_features肯定不是空的
logits_per_image = logit_scale * all_image_features @ all_text_features.T
logits_per_text = logits_per_image.T
num_logits = logits_per_text.shape[0]
if self.prev_num_logits != num_logits or self.device not in self.labels:
labels = torch.arange(num_logits, device=self.device, dtype=torch.long)
if self.trainer.world_size > 1 and self.local_loss:
labels = labels + num_logits * self.global_rank
if self.cache_labels:
self.labels[self.device] = labels
self.prev_num_logits = num_logits
else:
labels = self.labels[self.device]
total_loss = (
F.cross_entropy(logits_per_image, labels) +
F.cross_entropy(logits_per_text, labels)
) / 2 if logits_per_image is not None else F.cross_entropy(logits_per_text, labels)
return total_loss
def training_step(self, batch):
image, text, _ = batch
image_features, text_features, logit_scale = self(image, text)
total_loss = self.clip_loss(image_features, text_features, logit_scale)
self.log('train_loss', total_loss, sync_dist=False)
return total_loss
def on_train_batch_end(self, outputs, batch, batch_idx: int) -> None:
with torch.no_grad():
self.model.logit_scale.clamp_(0, math.log(100))
def get_metrics(self, image_features, text_features, labels, logit_scale):
# 计算相似度,支持多个样本的情况(比如一个图片有多个caption)
# img2txt计算的时候要用到,因为一张图片可能对应多个文本。
# txt2img计算的时候不需要(一般一个text只有一个对应图片)
metrics = {}
logits_per_image = (logit_scale * image_features @ text_features.t()).detach().cpu()
logits_per_text = logits_per_image.t().detach().cpu()
logits = {"image_to_text": logits_per_image, "text_to_image": logits_per_text}
label2idx = {} # 计算label到idx的映射。
repeat_id = []
for i, label in enumerate(labels):
if label not in label2idx:
label2idx[label] = [i]
else:
# 表示该index的标签出现过,记录这个index,后续算txt2img分数的时候,这些index的权值要降低。
label2idx[label].append(i)
repeat_id.append(i)
ground_truth = [label2idx[label] for label in labels]
for name, logit in logits.items():
if name == 'text_to_image':
logit[:, repeat_id] -= 1e8 # 这部分的分数要降低。(重复出现的图片,直接忽略)
r_stat = {1: [], 5: [], 10: []}
# r1_stat, r5_stat, r10_stat = [], [], []
# index of the largest element to the smallest
ranking = torch.argsort(logit, descending=True)
for i, each_query in enumerate(ranking[:, :10]):
for j, q in enumerate(each_query):
found = False
if q in ground_truth[i]:
for k, v in r_stat.items():
if j < k:
found = True
v.append(1)
if found:
break
for k, v in r_stat.items():
metrics[f'{name}_R@{k}'] = sum(v)/len(logit)
return metrics
def validation_step(self, batch, batch_idx):
image, text, label = batch
image_features, text_features, logit_scale = self(image, text)
return image_features, text_features, logit_scale, text['input_ids'].shape[0], label
def validation_epoch_end(self, val_outputs):
all_image_features = []
all_text_features = []
all_labels = []
sample_size = 0
for o in val_outputs:
all_image_features.append(o[0])
all_text_features.append(o[1])
sample_size += o[3]
all_labels += o[4]
if len(all_image_features) == 0 or len(all_text_features) == 0:
return
all_image_features = torch.cat(all_image_features)
all_text_features = torch.cat(all_text_features)
logit_scale = val_outputs[0][2].mean()
logits_per_image = logit_scale * all_image_features @ all_text_features.t()
logits_per_text = logits_per_image.t()
labels = torch.arange(sample_size, device=self.device).long()
total_loss = (F.cross_entropy(logits_per_image, labels)
+ F.cross_entropy(logits_per_text, labels)) / 2
val_metrics = self.get_metrics(
image_features=all_image_features,
text_features=all_text_features,
logit_scale=logit_scale,
labels=all_labels)
loss = total_loss / sample_size
self.log('val_loss', loss, sync_dist=False)
for k, v in val_metrics.items():
self.log(f'val_{k}', v, sync_dist=False)
def on_load_checkpoint(self, checkpoint) -> None:
# 兼容低版本lightning,低版本lightning从ckpt起来时steps数会被重置为0
global_step_offset = checkpoint["global_step"]
if 'global_samples' in checkpoint:
self.consumed_samples = checkpoint['global_samples']
self.trainer.fit_loop.epoch_loop._batches_that_stepped = global_step_offset
def on_save_checkpoint(self, checkpoint) -> None:
# 保存的时候把权重按huggingface的形式保存出来
if self.global_rank == 0:
dir_path = os.path.join(
self.hparams.default_root_dir, f'hf_out_{self.trainer.current_epoch}_{self.trainer.global_step}')
if not os.path.exists(dir_path):
os.mkdir(dir_path)
self.model.save_pretrained(dir_path)
self.processor.save_pretrained(dir_path)
if __name__ == '__main__':
args_parser = argparse.ArgumentParser()
args_parser = add_module_args(args_parser)
args_parser = add_data_args(args_parser)
args_parser = UniversalDataModule.add_data_specific_args(args_parser)
args_parser = Trainer.add_argparse_args(args_parser)
args_parser = TaiyiCLIP.add_module_specific_args(args_parser)
args_parser = UniversalCheckpoint.add_argparse_args(args_parser)
args = args_parser.parse_args()
lr_monitor = LearningRateMonitor(logging_interval='step')
checkpoint_callback = UniversalCheckpoint(args)
trainer = Trainer.from_argparse_args(args,
callbacks=[
lr_monitor,
checkpoint_callback])
model = TaiyiCLIP(args)
processor = model.processor
collate_fn = Collator(args, processor)
datasets = load_data(args, global_rank=trainer.global_rank)
# 加载单个验证集:!!!验证代码有效性临时这样干的,验证完有效性会删除
from fengshen.examples.pretrain_taiyi_clip.flickr_datasets import flickr30k_CNA
img_root = '/shared_space/ccnl/mm_data/Flickr30k-CNA/flickr30k/images'
text_annot_path = '/shared_space/ccnl/mm_data/Flickr30k-CNA/test/flickr30k_cn_test.txt'
datasets[args.val_datasets_field] = flickr30k_CNA(img_root, text_annot_path, collate_fn)
datamoule = UniversalDataModule(
tokenizer=None, collate_fn=collate_fn, args=args, datasets=datasets)
trainer.fit(model, datamoule, ckpt_path=args.load_ckpt_path)
|