Spaces:
Runtime error
Runtime error
Upload 4 files
Browse files
README.md
CHANGED
@@ -1,13 +1,11 @@
|
|
1 |
---
|
2 |
title: Video Classification
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
license:
|
11 |
-
---
|
12 |
-
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
title: Video Classification
|
3 |
+
emoji: 📽
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: pink
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 2.9.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: apache-2.0
|
11 |
+
---
|
|
|
|
app.py
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
from utils import (
|
4 |
+
create_gif_from_video_file,
|
5 |
+
download_youtube_video,
|
6 |
+
get_num_total_frames,
|
7 |
+
)
|
8 |
+
from transformers import pipeline
|
9 |
+
from huggingface_hub import HfApi, ModelSearchArguments, ModelFilter
|
10 |
+
|
11 |
+
FRAME_SAMPLING_RATE = 4
|
12 |
+
DEFAULT_MODEL = "fcakyon/timesformer-base-finetuned-k600"
|
13 |
+
|
14 |
+
VALID_VIDEOCLASSIFICATION_MODELS = [
|
15 |
+
"MCG-NJU/videomae-large-finetuned-kinetics",
|
16 |
+
"facebook/timesformer-base-finetuned-k400",
|
17 |
+
"fcakyon/timesformer-large-finetuned-k400",
|
18 |
+
"MCG-NJU/videomae-base-finetuned-kinetics",
|
19 |
+
"fcakyon/timesformer-base-finetuned-k600", # currently facebook version is broken
|
20 |
+
"fcakyon/timesformer-large-finetuned-k600",
|
21 |
+
"facebook/timesformer-hr-finetuned-k400",
|
22 |
+
"fcakyon/timesformer-hr-finetuned-k600", # currently facebook version is broken
|
23 |
+
"facebook/timesformer-base-finetuned-ssv2",
|
24 |
+
"fcakyon/timesformer-large-finetuned-ssv2",
|
25 |
+
"facebook/timesformer-hr-finetuned-ssv2",
|
26 |
+
"MCG-NJU/videomae-base-finetuned-ssv2",
|
27 |
+
"MCG-NJU/videomae-base-short-finetuned-kinetics",
|
28 |
+
"MCG-NJU/videomae-base-short-ssv2",
|
29 |
+
"MCG-NJU/videomae-base-short-finetuned-ssv2",
|
30 |
+
"sayakpaul/videomae-base-finetuned-ucf101-subset",
|
31 |
+
"nateraw/videomae-base-finetuned-ucf101",
|
32 |
+
"MCG-NJU/videomae-base-ssv2",
|
33 |
+
"zahrav/videomae-base-finetuned-ucf101-subset",
|
34 |
+
]
|
35 |
+
|
36 |
+
|
37 |
+
pipe = pipeline(
|
38 |
+
task="video-classification",
|
39 |
+
model=DEFAULT_MODEL,
|
40 |
+
top_k=5,
|
41 |
+
frame_sampling_rate=FRAME_SAMPLING_RATE,
|
42 |
+
)
|
43 |
+
|
44 |
+
|
45 |
+
examples = [
|
46 |
+
["https://www.youtube.com/watch?v=huAJ9dC5lmI"],
|
47 |
+
["https://www.youtube.com/watch?v=wvcWt6u5HTg"],
|
48 |
+
["https://www.youtube.com/watch?v=-3kZSi5qjRM"],
|
49 |
+
["https://www.youtube.com/watch?v=-6usjfP8hys"],
|
50 |
+
["https://www.youtube.com/watch?v=B8OdMwVwyXc"],
|
51 |
+
["https://www.youtube.com/watch?v=B9ea7YyCP6E"],
|
52 |
+
["https://www.youtube.com/watch?v=BBkpaeJBKmk"],
|
53 |
+
["https://www.youtube.com/watch?v=BBqU8Apee_g"],
|
54 |
+
["https://www.youtube.com/watch?v=BDHub0gBGtc"],
|
55 |
+
["https://www.youtube.com/watch?v=I7cwq6_4QtM"],
|
56 |
+
["https://www.youtube.com/watch?v=Z0mJDXpNhYA"],
|
57 |
+
["https://www.youtube.com/watch?v=QkQQjFGnZlg"],
|
58 |
+
["https://www.youtube.com/watch?v=IQaoRUQif14"],
|
59 |
+
]
|
60 |
+
|
61 |
+
|
62 |
+
def get_video_model_names():
|
63 |
+
model_args = ModelSearchArguments()
|
64 |
+
filter = ModelFilter(
|
65 |
+
task=model_args.pipeline_tag.VideoClassification,
|
66 |
+
library=model_args.library.Transformers,
|
67 |
+
)
|
68 |
+
api = HfApi()
|
69 |
+
video_models = list(
|
70 |
+
iter(api.list_models(filter=filter, sort="downloads", direction=-1))
|
71 |
+
)
|
72 |
+
video_models = [video_model.id for video_model in video_models]
|
73 |
+
return video_models
|
74 |
+
|
75 |
+
|
76 |
+
def select_model(model_name):
|
77 |
+
global pipe
|
78 |
+
pipe = pipeline(
|
79 |
+
task="video-classification",
|
80 |
+
model=model_name,
|
81 |
+
top_k=5,
|
82 |
+
frame_sampling_rate=FRAME_SAMPLING_RATE,
|
83 |
+
)
|
84 |
+
|
85 |
+
|
86 |
+
def predict(youtube_url_or_file_path):
|
87 |
+
|
88 |
+
if youtube_url_or_file_path.startswith("http"):
|
89 |
+
video_path = download_youtube_video(youtube_url_or_file_path)
|
90 |
+
else:
|
91 |
+
video_path = youtube_url_or_file_path
|
92 |
+
|
93 |
+
# rearrange sampling rate based on video length and model input length
|
94 |
+
num_total_frames = get_num_total_frames(video_path)
|
95 |
+
num_model_input_frames = pipe.model.config.num_frames
|
96 |
+
if num_total_frames < FRAME_SAMPLING_RATE * num_model_input_frames:
|
97 |
+
frame_sampling_rate = num_total_frames // num_model_input_frames
|
98 |
+
else:
|
99 |
+
frame_sampling_rate = FRAME_SAMPLING_RATE
|
100 |
+
|
101 |
+
gif_path = create_gif_from_video_file(
|
102 |
+
video_path, frame_sampling_rate=frame_sampling_rate, save_path="video.gif"
|
103 |
+
)
|
104 |
+
|
105 |
+
# run inference
|
106 |
+
results = pipe(videos=video_path, frame_sampling_rate=frame_sampling_rate)
|
107 |
+
|
108 |
+
os.remove(video_path)
|
109 |
+
|
110 |
+
label_to_score = {result["label"]: result["score"] for result in results}
|
111 |
+
|
112 |
+
return label_to_score, gif_path
|
113 |
+
|
114 |
+
|
115 |
+
app = gr.Blocks()
|
116 |
+
with app:
|
117 |
+
gr.Markdown(
|
118 |
+
"# **<p align='center'>Video Classification with HuggingFace Transformers</p>**"
|
119 |
+
)
|
120 |
+
gr.Markdown(
|
121 |
+
"""
|
122 |
+
<p style='text-align: center'>
|
123 |
+
Perform video classification with <a href='https://huggingface.co/models?pipeline_tag=video-classification&library=transformers' target='_blank'>HuggingFace Transformers video models</a>.
|
124 |
+
<br> For zero-shot classification, you can use the <a href='https://huggingface.co/spaces/fcakyon/zero-shot-video-classification' target='_blank'>zero-shot classification demo</a>.
|
125 |
+
</p>
|
126 |
+
"""
|
127 |
+
)
|
128 |
+
gr.Markdown(
|
129 |
+
"""
|
130 |
+
<p style='text-align: center'>
|
131 |
+
Follow me for more!
|
132 |
+
<br> <a href='https://twitter.com/fcakyon' target='_blank'>twitter</a> | <a href='https://github.com/fcakyon' target='_blank'>github</a> | <a href='https://www.linkedin.com/in/fcakyon/' target='_blank'>linkedin</a> | <a href='https://fcakyon.medium.com/' target='_blank'>medium</a>
|
133 |
+
</p>
|
134 |
+
"""
|
135 |
+
)
|
136 |
+
|
137 |
+
with gr.Row():
|
138 |
+
with gr.Column():
|
139 |
+
model_names_dropdown = gr.Dropdown(
|
140 |
+
choices=VALID_VIDEOCLASSIFICATION_MODELS,
|
141 |
+
label="Model:",
|
142 |
+
show_label=True,
|
143 |
+
value=DEFAULT_MODEL,
|
144 |
+
)
|
145 |
+
model_names_dropdown.change(fn=select_model, inputs=model_names_dropdown)
|
146 |
+
with gr.Tab(label="Youtube URL"):
|
147 |
+
gr.Markdown("### **Provide a Youtube video URL**")
|
148 |
+
youtube_url = gr.Textbox(label="Youtube URL:", show_label=True)
|
149 |
+
youtube_url_predict_btn = gr.Button(value="Predict")
|
150 |
+
with gr.Tab(label="Local File"):
|
151 |
+
gr.Markdown("### **Upload a video file**")
|
152 |
+
video_file = gr.Video(label="Video File:", show_label=True)
|
153 |
+
local_video_predict_btn = gr.Button(value="Predict")
|
154 |
+
with gr.Column():
|
155 |
+
video_gif = gr.Image(
|
156 |
+
label="Input Clip",
|
157 |
+
show_label=True,
|
158 |
+
)
|
159 |
+
with gr.Column():
|
160 |
+
predictions = gr.Label(
|
161 |
+
label="Predictions:", show_label=True, num_top_classes=5
|
162 |
+
)
|
163 |
+
|
164 |
+
gr.Markdown("**Examples:**")
|
165 |
+
gr.Examples(
|
166 |
+
examples,
|
167 |
+
youtube_url,
|
168 |
+
[predictions, video_gif],
|
169 |
+
fn=predict,
|
170 |
+
cache_examples=False,
|
171 |
+
)
|
172 |
+
|
173 |
+
youtube_url_predict_btn.click(
|
174 |
+
predict, inputs=youtube_url, outputs=[predictions, video_gif]
|
175 |
+
)
|
176 |
+
local_video_predict_btn.click(
|
177 |
+
predict, inputs=video_file, outputs=[predictions, video_gif]
|
178 |
+
)
|
179 |
+
gr.Markdown(
|
180 |
+
"""
|
181 |
+
\n Demo created by: <a href=\"https://github.com/fcakyon\">fcakyon</a>.
|
182 |
+
<br> Powered by <a href='https://huggingface.co/models?pipeline_tag=video-classification&library=transformers' target='_blank'>HuggingFace Transformers video models</a> .
|
183 |
+
"""
|
184 |
+
)
|
185 |
+
|
186 |
+
app.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
torch
|
3 |
+
decord
|
4 |
+
pytube
|
5 |
+
imageio
|
6 |
+
transformers @ git+https://github.com/huggingface/transformers.git@799cea64ac1029d66e9e58f18bc6f47892270723
|
7 |
+
huggingface-hub
|
utils.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
from pytube import YouTube
|
3 |
+
import numpy as np
|
4 |
+
from decord import VideoReader, cpu
|
5 |
+
import imageio
|
6 |
+
|
7 |
+
|
8 |
+
def download_youtube_video(url: str):
|
9 |
+
yt = YouTube(url)
|
10 |
+
|
11 |
+
streams = yt.streams.filter(file_extension="mp4")
|
12 |
+
file_path = streams[0].download()
|
13 |
+
return file_path
|
14 |
+
|
15 |
+
|
16 |
+
def sample_frames_from_video_file(
|
17 |
+
file_path: str, num_frames: int = 16, frame_sampling_rate=1
|
18 |
+
):
|
19 |
+
videoreader = VideoReader(file_path)
|
20 |
+
videoreader.seek(0)
|
21 |
+
|
22 |
+
# sample frames
|
23 |
+
start_idx = 0
|
24 |
+
end_idx = num_frames * frame_sampling_rate - 1
|
25 |
+
indices = np.linspace(start_idx, end_idx, num=num_frames, dtype=np.int64)
|
26 |
+
frames = videoreader.get_batch(indices).asnumpy()
|
27 |
+
|
28 |
+
return frames
|
29 |
+
|
30 |
+
|
31 |
+
def get_num_total_frames(file_path: str):
|
32 |
+
videoreader = VideoReader(file_path)
|
33 |
+
videoreader.seek(0)
|
34 |
+
return len(videoreader)
|
35 |
+
|
36 |
+
|
37 |
+
def convert_frames_to_gif(frames, save_path: str = "frames.gif"):
|
38 |
+
converted_frames = frames.astype(np.uint8)
|
39 |
+
Path(save_path).parent.mkdir(parents=True, exist_ok=True)
|
40 |
+
imageio.mimsave(save_path, converted_frames, fps=8)
|
41 |
+
return save_path
|
42 |
+
|
43 |
+
|
44 |
+
def create_gif_from_video_file(
|
45 |
+
file_path: str,
|
46 |
+
num_frames: int = 16,
|
47 |
+
frame_sampling_rate: int = 1,
|
48 |
+
save_path: str = "frames.gif",
|
49 |
+
):
|
50 |
+
frames = sample_frames_from_video_file(file_path, num_frames, frame_sampling_rate)
|
51 |
+
return convert_frames_to_gif(frames, save_path)
|