VoiceClone / videosys /models /autoencoders /autoencoder_kl_open_sora_plan.py
oahzxl's picture
update
ab7be96
# Adapted from Open-Sora-Plan
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# Open-Sora-Plan: https://github.com/PKU-YuanGroup/Open-Sora-Plan
# --------------------------------------------------------
import glob
import os
from typing import Optional, Tuple, Union
import numpy as np
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
from diffusers import ConfigMixin, ModelMixin
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.modeling_utils import ModelMixin
from diffusers.utils import logging
from einops import rearrange
from torch import nn
logging.set_verbosity_error()
def Normalize(in_channels, num_groups=32):
return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
def tensor_to_video(x):
x = x.detach().cpu()
x = torch.clamp(x, -1, 1)
x = (x + 1) / 2
x = x.permute(1, 0, 2, 3).float().numpy() # c t h w ->
x = (255 * x).astype(np.uint8)
return x
def nonlinearity(x):
return x * torch.sigmoid(x)
class DiagonalGaussianDistribution(object):
def __init__(self, parameters, deterministic=False):
self.parameters = parameters
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
self.deterministic = deterministic
self.std = torch.exp(0.5 * self.logvar)
self.var = torch.exp(self.logvar)
if self.deterministic:
self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
def sample(self):
x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device)
return x
def kl(self, other=None):
if self.deterministic:
return torch.Tensor([0.0])
else:
if other is None:
return 0.5 * torch.sum(torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar, dim=[1, 2, 3])
else:
return 0.5 * torch.sum(
torch.pow(self.mean - other.mean, 2) / other.var
+ self.var / other.var
- 1.0
- self.logvar
+ other.logvar,
dim=[1, 2, 3],
)
def nll(self, sample, dims=[1, 2, 3]):
if self.deterministic:
return torch.Tensor([0.0])
logtwopi = np.log(2.0 * np.pi)
return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, dim=dims)
def mode(self):
return self.mean
def resolve_str_to_obj(str_val, append=True):
return globals()[str_val]
class VideoBaseAE_PL(ModelMixin, ConfigMixin):
config_name = "config.json"
def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
def encode(self, x: torch.Tensor, *args, **kwargs):
pass
def decode(self, encoding: torch.Tensor, *args, **kwargs):
pass
@property
def num_training_steps(self) -> int:
"""Total training steps inferred from datamodule and devices."""
if self.trainer.max_steps:
return self.trainer.max_steps
limit_batches = self.trainer.limit_train_batches
batches = len(self.train_dataloader())
batches = min(batches, limit_batches) if isinstance(limit_batches, int) else int(limit_batches * batches)
num_devices = max(1, self.trainer.num_gpus, self.trainer.num_processes)
if self.trainer.tpu_cores:
num_devices = max(num_devices, self.trainer.tpu_cores)
effective_accum = self.trainer.accumulate_grad_batches * num_devices
return (batches // effective_accum) * self.trainer.max_epochs
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
ckpt_files = glob.glob(os.path.join(pretrained_model_name_or_path, "*.ckpt"))
if ckpt_files:
# Adapt to PyTorch Lightning
last_ckpt_file = ckpt_files[-1]
config_file = os.path.join(pretrained_model_name_or_path, cls.config_name)
model = cls.from_config(config_file)
print("init from {}".format(last_ckpt_file))
model.init_from_ckpt(last_ckpt_file)
return model
else:
return super().from_pretrained(pretrained_model_name_or_path, **kwargs)
class Encoder(nn.Module):
def __init__(
self,
z_channels: int,
hidden_size: int,
hidden_size_mult: Tuple[int] = (1, 2, 4, 4),
attn_resolutions: Tuple[int] = (16,),
conv_in: str = "Conv2d",
conv_out: str = "CasualConv3d",
attention: str = "AttnBlock",
resnet_blocks: Tuple[str] = (
"ResnetBlock2D",
"ResnetBlock2D",
"ResnetBlock2D",
"ResnetBlock3D",
),
spatial_downsample: Tuple[str] = (
"Downsample",
"Downsample",
"Downsample",
"",
),
temporal_downsample: Tuple[str] = ("", "", "TimeDownsampleRes2x", ""),
mid_resnet: str = "ResnetBlock3D",
dropout: float = 0.0,
resolution: int = 256,
num_res_blocks: int = 2,
double_z: bool = True,
) -> None:
super().__init__()
assert len(resnet_blocks) == len(hidden_size_mult), print(hidden_size_mult, resnet_blocks)
# ---- Config ----
self.num_resolutions = len(hidden_size_mult)
self.resolution = resolution
self.num_res_blocks = num_res_blocks
# ---- In ----
self.conv_in = resolve_str_to_obj(conv_in)(3, hidden_size, kernel_size=3, stride=1, padding=1)
# ---- Downsample ----
curr_res = resolution
in_ch_mult = (1,) + tuple(hidden_size_mult)
self.in_ch_mult = in_ch_mult
self.down = nn.ModuleList()
for i_level in range(self.num_resolutions):
block = nn.ModuleList()
attn = nn.ModuleList()
block_in = hidden_size * in_ch_mult[i_level]
block_out = hidden_size * hidden_size_mult[i_level]
for i_block in range(self.num_res_blocks):
block.append(
resolve_str_to_obj(resnet_blocks[i_level])(
in_channels=block_in,
out_channels=block_out,
dropout=dropout,
)
)
block_in = block_out
if curr_res in attn_resolutions:
attn.append(resolve_str_to_obj(attention)(block_in))
down = nn.Module()
down.block = block
down.attn = attn
if spatial_downsample[i_level]:
down.downsample = resolve_str_to_obj(spatial_downsample[i_level])(block_in, block_in)
curr_res = curr_res // 2
if temporal_downsample[i_level]:
down.time_downsample = resolve_str_to_obj(temporal_downsample[i_level])(block_in, block_in)
self.down.append(down)
# ---- Mid ----
self.mid = nn.Module()
self.mid.block_1 = resolve_str_to_obj(mid_resnet)(
in_channels=block_in,
out_channels=block_in,
dropout=dropout,
)
self.mid.attn_1 = resolve_str_to_obj(attention)(block_in)
self.mid.block_2 = resolve_str_to_obj(mid_resnet)(
in_channels=block_in,
out_channels=block_in,
dropout=dropout,
)
# ---- Out ----
self.norm_out = Normalize(block_in)
self.conv_out = resolve_str_to_obj(conv_out)(
block_in,
2 * z_channels if double_z else z_channels,
kernel_size=3,
stride=1,
padding=1,
)
def forward(self, x):
hs = [self.conv_in(x)]
for i_level in range(self.num_resolutions):
for i_block in range(self.num_res_blocks):
h = self.down[i_level].block[i_block](hs[-1])
if len(self.down[i_level].attn) > 0:
h = self.down[i_level].attn[i_block](h)
hs.append(h)
if hasattr(self.down[i_level], "downsample"):
hs.append(self.down[i_level].downsample(hs[-1]))
if hasattr(self.down[i_level], "time_downsample"):
hs_down = self.down[i_level].time_downsample(hs[-1])
hs.append(hs_down)
h = self.mid.block_1(h)
h = self.mid.attn_1(h)
h = self.mid.block_2(h)
h = self.norm_out(h)
h = nonlinearity(h)
h = self.conv_out(h)
return h
class Decoder(nn.Module):
def __init__(
self,
z_channels: int,
hidden_size: int,
hidden_size_mult: Tuple[int] = (1, 2, 4, 4),
attn_resolutions: Tuple[int] = (16,),
conv_in: str = "Conv2d",
conv_out: str = "CasualConv3d",
attention: str = "AttnBlock",
resnet_blocks: Tuple[str] = (
"ResnetBlock3D",
"ResnetBlock3D",
"ResnetBlock3D",
"ResnetBlock3D",
),
spatial_upsample: Tuple[str] = (
"",
"SpatialUpsample2x",
"SpatialUpsample2x",
"SpatialUpsample2x",
),
temporal_upsample: Tuple[str] = ("", "", "", "TimeUpsampleRes2x"),
mid_resnet: str = "ResnetBlock3D",
dropout: float = 0.0,
resolution: int = 256,
num_res_blocks: int = 2,
):
super().__init__()
# ---- Config ----
self.num_resolutions = len(hidden_size_mult)
self.resolution = resolution
self.num_res_blocks = num_res_blocks
# ---- In ----
block_in = hidden_size * hidden_size_mult[self.num_resolutions - 1]
curr_res = resolution // 2 ** (self.num_resolutions - 1)
self.conv_in = resolve_str_to_obj(conv_in)(z_channels, block_in, kernel_size=3, padding=1)
# ---- Mid ----
self.mid = nn.Module()
self.mid.block_1 = resolve_str_to_obj(mid_resnet)(
in_channels=block_in,
out_channels=block_in,
dropout=dropout,
)
self.mid.attn_1 = resolve_str_to_obj(attention)(block_in)
self.mid.block_2 = resolve_str_to_obj(mid_resnet)(
in_channels=block_in,
out_channels=block_in,
dropout=dropout,
)
# ---- Upsample ----
self.up = nn.ModuleList()
for i_level in reversed(range(self.num_resolutions)):
block = nn.ModuleList()
attn = nn.ModuleList()
block_out = hidden_size * hidden_size_mult[i_level]
for i_block in range(self.num_res_blocks + 1):
block.append(
resolve_str_to_obj(resnet_blocks[i_level])(
in_channels=block_in,
out_channels=block_out,
dropout=dropout,
)
)
block_in = block_out
if curr_res in attn_resolutions:
attn.append(resolve_str_to_obj(attention)(block_in))
up = nn.Module()
up.block = block
up.attn = attn
if spatial_upsample[i_level]:
up.upsample = resolve_str_to_obj(spatial_upsample[i_level])(block_in, block_in)
curr_res = curr_res * 2
if temporal_upsample[i_level]:
up.time_upsample = resolve_str_to_obj(temporal_upsample[i_level])(block_in, block_in)
self.up.insert(0, up)
# ---- Out ----
self.norm_out = Normalize(block_in)
self.conv_out = resolve_str_to_obj(conv_out)(block_in, 3, kernel_size=3, padding=1)
def forward(self, z):
h = self.conv_in(z)
h = self.mid.block_1(h)
h = self.mid.attn_1(h)
h = self.mid.block_2(h)
for i_level in reversed(range(self.num_resolutions)):
for i_block in range(self.num_res_blocks + 1):
h = self.up[i_level].block[i_block](h)
if len(self.up[i_level].attn) > 0:
h = self.up[i_level].attn[i_block](h)
if hasattr(self.up[i_level], "upsample"):
h = self.up[i_level].upsample(h)
if hasattr(self.up[i_level], "time_upsample"):
h = self.up[i_level].time_upsample(h)
h = self.norm_out(h)
h = nonlinearity(h)
h = self.conv_out(h)
return h
class CausalVAEModel(VideoBaseAE_PL):
@register_to_config
def __init__(
self,
lr: float = 1e-5,
hidden_size: int = 128,
z_channels: int = 4,
hidden_size_mult: Tuple[int] = (1, 2, 4, 4),
attn_resolutions: Tuple[int] = [],
dropout: float = 0.0,
resolution: int = 256,
double_z: bool = True,
embed_dim: int = 4,
num_res_blocks: int = 2,
loss_type: str = "opensora.models.ae.videobase.losses.LPIPSWithDiscriminator",
loss_params: dict = {
"kl_weight": 0.000001,
"logvar_init": 0.0,
"disc_start": 2001,
"disc_weight": 0.5,
},
q_conv: str = "CausalConv3d",
encoder_conv_in: str = "CausalConv3d",
encoder_conv_out: str = "CausalConv3d",
encoder_attention: str = "AttnBlock3D",
encoder_resnet_blocks: Tuple[str] = (
"ResnetBlock3D",
"ResnetBlock3D",
"ResnetBlock3D",
"ResnetBlock3D",
),
encoder_spatial_downsample: Tuple[str] = (
"SpatialDownsample2x",
"SpatialDownsample2x",
"SpatialDownsample2x",
"",
),
encoder_temporal_downsample: Tuple[str] = (
"",
"TimeDownsample2x",
"TimeDownsample2x",
"",
),
encoder_mid_resnet: str = "ResnetBlock3D",
decoder_conv_in: str = "CausalConv3d",
decoder_conv_out: str = "CausalConv3d",
decoder_attention: str = "AttnBlock3D",
decoder_resnet_blocks: Tuple[str] = (
"ResnetBlock3D",
"ResnetBlock3D",
"ResnetBlock3D",
"ResnetBlock3D",
),
decoder_spatial_upsample: Tuple[str] = (
"",
"SpatialUpsample2x",
"SpatialUpsample2x",
"SpatialUpsample2x",
),
decoder_temporal_upsample: Tuple[str] = ("", "", "TimeUpsample2x", "TimeUpsample2x"),
decoder_mid_resnet: str = "ResnetBlock3D",
) -> None:
super().__init__()
self.tile_sample_min_size = 256
self.tile_sample_min_size_t = 65
self.tile_latent_min_size = int(self.tile_sample_min_size / (2 ** (len(hidden_size_mult) - 1)))
t_down_ratio = [i for i in encoder_temporal_downsample if len(i) > 0]
self.tile_latent_min_size_t = int((self.tile_sample_min_size_t - 1) / (2 ** len(t_down_ratio))) + 1
self.tile_overlap_factor = 0.25
self.use_tiling = False
self.learning_rate = lr
self.lr_g_factor = 1.0
self.encoder = Encoder(
z_channels=z_channels,
hidden_size=hidden_size,
hidden_size_mult=hidden_size_mult,
attn_resolutions=attn_resolutions,
conv_in=encoder_conv_in,
conv_out=encoder_conv_out,
attention=encoder_attention,
resnet_blocks=encoder_resnet_blocks,
spatial_downsample=encoder_spatial_downsample,
temporal_downsample=encoder_temporal_downsample,
mid_resnet=encoder_mid_resnet,
dropout=dropout,
resolution=resolution,
num_res_blocks=num_res_blocks,
double_z=double_z,
)
self.decoder = Decoder(
z_channels=z_channels,
hidden_size=hidden_size,
hidden_size_mult=hidden_size_mult,
attn_resolutions=attn_resolutions,
conv_in=decoder_conv_in,
conv_out=decoder_conv_out,
attention=decoder_attention,
resnet_blocks=decoder_resnet_blocks,
spatial_upsample=decoder_spatial_upsample,
temporal_upsample=decoder_temporal_upsample,
mid_resnet=decoder_mid_resnet,
dropout=dropout,
resolution=resolution,
num_res_blocks=num_res_blocks,
)
quant_conv_cls = resolve_str_to_obj(q_conv)
self.quant_conv = quant_conv_cls(2 * z_channels, 2 * embed_dim, 1)
self.post_quant_conv = quant_conv_cls(embed_dim, z_channels, 1)
def encode(self, x):
if self.use_tiling and (
x.shape[-1] > self.tile_sample_min_size
or x.shape[-2] > self.tile_sample_min_size
or x.shape[-3] > self.tile_sample_min_size_t
):
return self.tiled_encode(x)
h = self.encoder(x)
moments = self.quant_conv(h)
posterior = DiagonalGaussianDistribution(moments)
return posterior
def decode(self, z):
if self.use_tiling and (
z.shape[-1] > self.tile_latent_min_size
or z.shape[-2] > self.tile_latent_min_size
or z.shape[-3] > self.tile_latent_min_size_t
):
return self.tiled_decode(z)
z = self.post_quant_conv(z)
dec = self.decoder(z)
return dec
def forward(self, input, sample_posterior=True):
posterior = self.encode(input)
if sample_posterior:
z = posterior.sample()
else:
z = posterior.mode()
dec = self.decode(z)
return dec, posterior
def get_input(self, batch, k):
x = batch[k]
if len(x.shape) == 3:
x = x[..., None]
x = x.to(memory_format=torch.contiguous_format).float()
return x
def training_step(self, batch, batch_idx):
if hasattr(self.loss, "discriminator"):
return self._training_step_gan(batch, batch_idx=batch_idx)
else:
return self._training_step(batch, batch_idx=batch_idx)
def _training_step(self, batch, batch_idx):
inputs = self.get_input(batch, "video")
reconstructions, posterior = self(inputs)
aeloss, log_dict_ae = self.loss(
inputs,
reconstructions,
posterior,
split="train",
)
self.log(
"aeloss",
aeloss,
prog_bar=True,
logger=True,
on_step=True,
on_epoch=True,
)
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
return aeloss
def _training_step_gan(self, batch, batch_idx):
inputs = self.get_input(batch, "video")
reconstructions, posterior = self(inputs)
opt1, opt2 = self.optimizers()
# ---- AE Loss ----
aeloss, log_dict_ae = self.loss(
inputs,
reconstructions,
posterior,
0,
self.global_step,
last_layer=self.get_last_layer(),
split="train",
)
self.log(
"aeloss",
aeloss,
prog_bar=True,
logger=True,
on_step=True,
on_epoch=True,
)
opt1.zero_grad()
self.manual_backward(aeloss)
self.clip_gradients(opt1, gradient_clip_val=1, gradient_clip_algorithm="norm")
opt1.step()
# ---- GAN Loss ----
discloss, log_dict_disc = self.loss(
inputs,
reconstructions,
posterior,
1,
self.global_step,
last_layer=self.get_last_layer(),
split="train",
)
self.log(
"discloss",
discloss,
prog_bar=True,
logger=True,
on_step=True,
on_epoch=True,
)
opt2.zero_grad()
self.manual_backward(discloss)
self.clip_gradients(opt2, gradient_clip_val=1, gradient_clip_algorithm="norm")
opt2.step()
self.log_dict(
{**log_dict_ae, **log_dict_disc},
prog_bar=False,
logger=True,
on_step=True,
on_epoch=False,
)
def configure_optimizers(self):
from itertools import chain
lr = self.learning_rate
modules_to_train = [
self.encoder.named_parameters(),
self.decoder.named_parameters(),
self.post_quant_conv.named_parameters(),
self.quant_conv.named_parameters(),
]
params_with_time = []
params_without_time = []
for name, param in chain(*modules_to_train):
if "time" in name:
params_with_time.append(param)
else:
params_without_time.append(param)
optimizers = []
opt_ae = torch.optim.Adam(
[
{"params": params_with_time, "lr": lr},
{"params": params_without_time, "lr": lr},
],
lr=lr,
betas=(0.5, 0.9),
)
optimizers.append(opt_ae)
if hasattr(self.loss, "discriminator"):
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(), lr=lr, betas=(0.5, 0.9))
optimizers.append(opt_disc)
return optimizers, []
def get_last_layer(self):
if hasattr(self.decoder.conv_out, "conv"):
return self.decoder.conv_out.conv.weight
else:
return self.decoder.conv_out.weight
def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
blend_extent = min(a.shape[3], b.shape[3], blend_extent)
for y in range(blend_extent):
b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (
y / blend_extent
)
return b
def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
blend_extent = min(a.shape[4], b.shape[4], blend_extent)
for x in range(blend_extent):
b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (
x / blend_extent
)
return b
def tiled_encode(self, x):
t = x.shape[2]
t_chunk_idx = [i for i in range(0, t, self.tile_sample_min_size_t - 1)]
if len(t_chunk_idx) == 1 and t_chunk_idx[0] == 0:
t_chunk_start_end = [[0, t]]
else:
t_chunk_start_end = [[t_chunk_idx[i], t_chunk_idx[i + 1] + 1] for i in range(len(t_chunk_idx) - 1)]
if t_chunk_start_end[-1][-1] > t:
t_chunk_start_end[-1][-1] = t
elif t_chunk_start_end[-1][-1] < t:
last_start_end = [t_chunk_idx[-1], t]
t_chunk_start_end.append(last_start_end)
moments = []
for idx, (start, end) in enumerate(t_chunk_start_end):
chunk_x = x[:, :, start:end]
if idx != 0:
moment = self.tiled_encode2d(chunk_x, return_moments=True)[:, :, 1:]
else:
moment = self.tiled_encode2d(chunk_x, return_moments=True)
moments.append(moment)
moments = torch.cat(moments, dim=2)
posterior = DiagonalGaussianDistribution(moments)
return posterior
def tiled_decode(self, x):
t = x.shape[2]
t_chunk_idx = [i for i in range(0, t, self.tile_latent_min_size_t - 1)]
if len(t_chunk_idx) == 1 and t_chunk_idx[0] == 0:
t_chunk_start_end = [[0, t]]
else:
t_chunk_start_end = [[t_chunk_idx[i], t_chunk_idx[i + 1] + 1] for i in range(len(t_chunk_idx) - 1)]
if t_chunk_start_end[-1][-1] > t:
t_chunk_start_end[-1][-1] = t
elif t_chunk_start_end[-1][-1] < t:
last_start_end = [t_chunk_idx[-1], t]
t_chunk_start_end.append(last_start_end)
dec_ = []
for idx, (start, end) in enumerate(t_chunk_start_end):
chunk_x = x[:, :, start:end]
if idx != 0:
dec = self.tiled_decode2d(chunk_x)[:, :, 1:]
else:
dec = self.tiled_decode2d(chunk_x)
dec_.append(dec)
dec_ = torch.cat(dec_, dim=2)
return dec_
def tiled_encode2d(self, x, return_moments=False):
overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor))
blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor)
row_limit = self.tile_latent_min_size - blend_extent
# Split the image into 512x512 tiles and encode them separately.
rows = []
for i in range(0, x.shape[3], overlap_size):
row = []
for j in range(0, x.shape[4], overlap_size):
tile = x[
:,
:,
:,
i : i + self.tile_sample_min_size,
j : j + self.tile_sample_min_size,
]
tile = self.encoder(tile)
tile = self.quant_conv(tile)
row.append(tile)
rows.append(row)
result_rows = []
for i, row in enumerate(rows):
result_row = []
for j, tile in enumerate(row):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
if j > 0:
tile = self.blend_h(row[j - 1], tile, blend_extent)
result_row.append(tile[:, :, :, :row_limit, :row_limit])
result_rows.append(torch.cat(result_row, dim=4))
moments = torch.cat(result_rows, dim=3)
posterior = DiagonalGaussianDistribution(moments)
if return_moments:
return moments
return posterior
def tiled_decode2d(self, z):
overlap_size = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor))
blend_extent = int(self.tile_sample_min_size * self.tile_overlap_factor)
row_limit = self.tile_sample_min_size - blend_extent
# Split z into overlapping 64x64 tiles and decode them separately.
# The tiles have an overlap to avoid seams between tiles.
rows = []
for i in range(0, z.shape[3], overlap_size):
row = []
for j in range(0, z.shape[4], overlap_size):
tile = z[
:,
:,
:,
i : i + self.tile_latent_min_size,
j : j + self.tile_latent_min_size,
]
tile = self.post_quant_conv(tile)
decoded = self.decoder(tile)
row.append(decoded)
rows.append(row)
result_rows = []
for i, row in enumerate(rows):
result_row = []
for j, tile in enumerate(row):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
if j > 0:
tile = self.blend_h(row[j - 1], tile, blend_extent)
result_row.append(tile[:, :, :, :row_limit, :row_limit])
result_rows.append(torch.cat(result_row, dim=4))
dec = torch.cat(result_rows, dim=3)
return dec
def enable_tiling(self, use_tiling: bool = True):
self.use_tiling = use_tiling
def disable_tiling(self):
self.enable_tiling(False)
def init_from_ckpt(self, path, ignore_keys=list(), remove_loss=False):
sd = torch.load(path, map_location="cpu")
print("init from " + path)
if "state_dict" in sd:
sd = sd["state_dict"]
keys = list(sd.keys())
for k in keys:
for ik in ignore_keys:
if k.startswith(ik):
print("Deleting key {} from state_dict.".format(k))
del sd[k]
self.load_state_dict(sd, strict=False)
def validation_step(self, batch, batch_idx):
inputs = self.get_input(batch, "video")
latents = self.encode(inputs).sample()
video_recon = self.decode(latents)
for idx in range(len(video_recon)):
self.logger.log_video(f"recon {batch_idx} {idx}", [tensor_to_video(video_recon[idx])], fps=[10])
class CausalVAEModelWrapper(nn.Module):
def __init__(self, model_path, subfolder=None, cache_dir=None, **kwargs):
super(CausalVAEModelWrapper, self).__init__()
# if os.path.exists(ckpt):
# self.vae = CausalVAEModel.load_from_checkpoint(ckpt)
self.vae = CausalVAEModel.from_pretrained(model_path, subfolder=subfolder, cache_dir=cache_dir, **kwargs)
def encode(self, x): # b c t h w
# x = self.vae.encode(x).sample()
x = self.vae.encode(x).sample().mul_(0.18215)
return x
def decode(self, x):
# x = self.vae.decode(x)
x = self.vae.decode(x / 0.18215)
x = rearrange(x, "b c t h w -> b t c h w").contiguous()
return x
def dtype(self):
return self.vae.dtype
#
# def device(self):
# return self.vae.device
videobase_ae_stride = {
"CausalVAEModel_4x8x8": [4, 8, 8],
}
videobase_ae_channel = {
"CausalVAEModel_4x8x8": 4,
}
videobase_ae = {
"CausalVAEModel_4x8x8": CausalVAEModelWrapper,
}
ae_stride_config = {}
ae_stride_config.update(videobase_ae_stride)
ae_channel_config = {}
ae_channel_config.update(videobase_ae_channel)
def getae_wrapper(ae):
"""deprecation"""
ae = videobase_ae.get(ae, None)
assert ae is not None
return ae
def video_to_image(func):
def wrapper(self, x, *args, **kwargs):
if x.dim() == 5:
t = x.shape[2]
x = rearrange(x, "b c t h w -> (b t) c h w")
x = func(self, x, *args, **kwargs)
x = rearrange(x, "(b t) c h w -> b c t h w", t=t)
return x
return wrapper
class Block(nn.Module):
def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
class LinearAttention(Block):
def __init__(self, dim, heads=4, dim_head=32):
super().__init__()
self.heads = heads
hidden_dim = dim_head * heads
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False)
self.to_out = nn.Conv2d(hidden_dim, dim, 1)
def forward(self, x):
b, c, h, w = x.shape
qkv = self.to_qkv(x)
q, k, v = rearrange(qkv, "b (qkv heads c) h w -> qkv b heads c (h w)", heads=self.heads, qkv=3)
k = k.softmax(dim=-1)
context = torch.einsum("bhdn,bhen->bhde", k, v)
out = torch.einsum("bhde,bhdn->bhen", context, q)
out = rearrange(out, "b heads c (h w) -> b (heads c) h w", heads=self.heads, h=h, w=w)
return self.to_out(out)
class LinAttnBlock(LinearAttention):
"""to match AttnBlock usage"""
def __init__(self, in_channels):
super().__init__(dim=in_channels, heads=1, dim_head=in_channels)
class AttnBlock3D(Block):
"""Compatible with old versions, there are issues, use with caution."""
def __init__(self, in_channels):
super().__init__()
self.in_channels = in_channels
self.norm = Normalize(in_channels)
self.q = CausalConv3d(in_channels, in_channels, kernel_size=1, stride=1)
self.k = CausalConv3d(in_channels, in_channels, kernel_size=1, stride=1)
self.v = CausalConv3d(in_channels, in_channels, kernel_size=1, stride=1)
self.proj_out = CausalConv3d(in_channels, in_channels, kernel_size=1, stride=1)
def forward(self, x):
h_ = x
h_ = self.norm(h_)
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
# compute attention
b, c, t, h, w = q.shape
q = q.reshape(b * t, c, h * w)
q = q.permute(0, 2, 1) # b,hw,c
k = k.reshape(b * t, c, h * w) # b,c,hw
w_ = torch.bmm(q, k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
w_ = w_ * (int(c) ** (-0.5))
w_ = torch.nn.functional.softmax(w_, dim=2)
# attend to values
v = v.reshape(b * t, c, h * w)
w_ = w_.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q)
h_ = torch.bmm(v, w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
h_ = h_.reshape(b, c, t, h, w)
h_ = self.proj_out(h_)
return x + h_
class AttnBlock3DFix(nn.Module):
"""
Thanks to https://github.com/PKU-YuanGroup/Open-Sora-Plan/pull/172.
"""
def __init__(self, in_channels):
super().__init__()
self.in_channels = in_channels
self.norm = Normalize(in_channels)
self.q = CausalConv3d(in_channels, in_channels, kernel_size=1, stride=1)
self.k = CausalConv3d(in_channels, in_channels, kernel_size=1, stride=1)
self.v = CausalConv3d(in_channels, in_channels, kernel_size=1, stride=1)
self.proj_out = CausalConv3d(in_channels, in_channels, kernel_size=1, stride=1)
def forward(self, x):
h_ = x
h_ = self.norm(h_)
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
# compute attention
# q: (b c t h w) -> (b t c h w) -> (b*t c h*w) -> (b*t h*w c)
b, c, t, h, w = q.shape
q = q.permute(0, 2, 1, 3, 4)
q = q.reshape(b * t, c, h * w)
q = q.permute(0, 2, 1)
# k: (b c t h w) -> (b t c h w) -> (b*t c h*w)
k = k.permute(0, 2, 1, 3, 4)
k = k.reshape(b * t, c, h * w)
# w: (b*t hw hw)
w_ = torch.bmm(q, k)
w_ = w_ * (int(c) ** (-0.5))
w_ = torch.nn.functional.softmax(w_, dim=2)
# attend to values
# v: (b c t h w) -> (b t c h w) -> (bt c hw)
# w_: (bt hw hw) -> (bt hw hw)
v = v.permute(0, 2, 1, 3, 4)
v = v.reshape(b * t, c, h * w)
w_ = w_.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q)
h_ = torch.bmm(v, w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
# h_: (b*t c hw) -> (b t c h w) -> (b c t h w)
h_ = h_.reshape(b, t, c, h, w)
h_ = h_.permute(0, 2, 1, 3, 4)
h_ = self.proj_out(h_)
return x + h_
class AttnBlock(Block):
def __init__(self, in_channels):
super().__init__()
self.in_channels = in_channels
self.norm = Normalize(in_channels)
self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
@video_to_image
def forward(self, x):
h_ = x
h_ = self.norm(h_)
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
# compute attention
b, c, h, w = q.shape
q = q.reshape(b, c, h * w)
q = q.permute(0, 2, 1) # b,hw,c
k = k.reshape(b, c, h * w) # b,c,hw
w_ = torch.bmm(q, k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
w_ = w_ * (int(c) ** (-0.5))
w_ = torch.nn.functional.softmax(w_, dim=2)
# attend to values
v = v.reshape(b, c, h * w)
w_ = w_.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q)
h_ = torch.bmm(v, w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
h_ = h_.reshape(b, c, h, w)
h_ = self.proj_out(h_)
return x + h_
class TemporalAttnBlock(Block):
def __init__(self, in_channels):
super().__init__()
self.in_channels = in_channels
self.norm = Normalize(in_channels)
self.q = torch.nn.Conv3d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
self.k = torch.nn.Conv3d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
self.v = torch.nn.Conv3d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
self.proj_out = torch.nn.Conv3d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
def forward(self, x):
h_ = x
h_ = self.norm(h_)
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
# compute attention
b, c, t, h, w = q.shape
q = rearrange(q, "b c t h w -> (b h w) t c")
k = rearrange(k, "b c t h w -> (b h w) c t")
v = rearrange(v, "b c t h w -> (b h w) c t")
w_ = torch.bmm(q, k)
w_ = w_ * (int(c) ** (-0.5))
w_ = torch.nn.functional.softmax(w_, dim=2)
# attend to values
w_ = w_.permute(0, 2, 1)
h_ = torch.bmm(v, w_)
h_ = rearrange(h_, "(b h w) c t -> b c t h w", h=h, w=w)
h_ = self.proj_out(h_)
return x + h_
def make_attn(in_channels, attn_type="vanilla"):
assert attn_type in ["vanilla", "linear", "none", "vanilla3D"], f"attn_type {attn_type} unknown"
print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
print(attn_type)
if attn_type == "vanilla":
return AttnBlock(in_channels)
elif attn_type == "vanilla3D":
return AttnBlock3D(in_channels)
elif attn_type == "none":
return nn.Identity(in_channels)
else:
return LinAttnBlock(in_channels)
class Conv2d(nn.Conv2d):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, Tuple[int]] = 3,
stride: Union[int, Tuple[int]] = 1,
padding: Union[str, int, Tuple[int]] = 0,
dilation: Union[int, Tuple[int]] = 1,
groups: int = 1,
bias: bool = True,
padding_mode: str = "zeros",
device=None,
dtype=None,
) -> None:
super().__init__(
in_channels,
out_channels,
kernel_size,
stride,
padding,
dilation,
groups,
bias,
padding_mode,
device,
dtype,
)
@video_to_image
def forward(self, x):
return super().forward(x)
class CausalConv3d(nn.Module):
def __init__(
self, chan_in, chan_out, kernel_size: Union[int, Tuple[int, int, int]], init_method="random", **kwargs
):
super().__init__()
self.kernel_size = cast_tuple(kernel_size, 3)
self.time_kernel_size = self.kernel_size[0]
self.chan_in = chan_in
self.chan_out = chan_out
stride = kwargs.pop("stride", 1)
padding = kwargs.pop("padding", 0)
padding = list(cast_tuple(padding, 3))
padding[0] = 0
stride = cast_tuple(stride, 3)
self.conv = nn.Conv3d(chan_in, chan_out, self.kernel_size, stride=stride, padding=padding)
self._init_weights(init_method)
def _init_weights(self, init_method):
torch.tensor(self.kernel_size)
if init_method == "avg":
assert self.kernel_size[1] == 1 and self.kernel_size[2] == 1, "only support temporal up/down sample"
assert self.chan_in == self.chan_out, "chan_in must be equal to chan_out"
weight = torch.zeros((self.chan_out, self.chan_in, *self.kernel_size))
eyes = torch.concat(
[
torch.eye(self.chan_in).unsqueeze(-1) * 1 / 3,
torch.eye(self.chan_in).unsqueeze(-1) * 1 / 3,
torch.eye(self.chan_in).unsqueeze(-1) * 1 / 3,
],
dim=-1,
)
weight[:, :, :, 0, 0] = eyes
self.conv.weight = nn.Parameter(
weight,
requires_grad=True,
)
elif init_method == "zero":
self.conv.weight = nn.Parameter(
torch.zeros((self.chan_out, self.chan_in, *self.kernel_size)),
requires_grad=True,
)
if self.conv.bias is not None:
nn.init.constant_(self.conv.bias, 0)
def forward(self, x):
# 1 + 16 16 as video, 1 as image
first_frame_pad = x[:, :, :1, :, :].repeat((1, 1, self.time_kernel_size - 1, 1, 1)) # b c t h w
x = torch.concatenate((first_frame_pad, x), dim=2) # 3 + 16
return self.conv(x)
class GroupNorm(Block):
def __init__(self, num_channels, num_groups=32, eps=1e-6, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
self.norm = torch.nn.GroupNorm(num_groups=num_groups, num_channels=num_channels, eps=1e-6, affine=True)
def forward(self, x):
return self.norm(x)
def Normalize(in_channels, num_groups=32):
return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
class ActNorm(nn.Module):
def __init__(self, num_features, logdet=False, affine=True, allow_reverse_init=False):
assert affine
super().__init__()
self.logdet = logdet
self.loc = nn.Parameter(torch.zeros(1, num_features, 1, 1))
self.scale = nn.Parameter(torch.ones(1, num_features, 1, 1))
self.allow_reverse_init = allow_reverse_init
self.register_buffer("initialized", torch.tensor(0, dtype=torch.uint8))
def initialize(self, input):
with torch.no_grad():
flatten = input.permute(1, 0, 2, 3).contiguous().view(input.shape[1], -1)
mean = flatten.mean(1).unsqueeze(1).unsqueeze(2).unsqueeze(3).permute(1, 0, 2, 3)
std = flatten.std(1).unsqueeze(1).unsqueeze(2).unsqueeze(3).permute(1, 0, 2, 3)
self.loc.data.copy_(-mean)
self.scale.data.copy_(1 / (std + 1e-6))
def forward(self, input, reverse=False):
if reverse:
return self.reverse(input)
if len(input.shape) == 2:
input = input[:, :, None, None]
squeeze = True
else:
squeeze = False
_, _, height, width = input.shape
if self.training and self.initialized.item() == 0:
self.initialize(input)
self.initialized.fill_(1)
h = self.scale * (input + self.loc)
if squeeze:
h = h.squeeze(-1).squeeze(-1)
if self.logdet:
log_abs = torch.log(torch.abs(self.scale))
logdet = height * width * torch.sum(log_abs)
logdet = logdet * torch.ones(input.shape[0]).to(input)
return h, logdet
return h
def reverse(self, output):
if self.training and self.initialized.item() == 0:
if not self.allow_reverse_init:
raise RuntimeError(
"Initializing ActNorm in reverse direction is "
"disabled by default. Use allow_reverse_init=True to enable."
)
else:
self.initialize(output)
self.initialized.fill_(1)
if len(output.shape) == 2:
output = output[:, :, None, None]
squeeze = True
else:
squeeze = False
h = output / self.scale - self.loc
if squeeze:
h = h.squeeze(-1).squeeze(-1)
return h
def nonlinearity(x):
return x * torch.sigmoid(x)
def cast_tuple(t, length=1):
return t if isinstance(t, tuple) else ((t,) * length)
def shift_dim(x, src_dim=-1, dest_dim=-1, make_contiguous=True):
n_dims = len(x.shape)
if src_dim < 0:
src_dim = n_dims + src_dim
if dest_dim < 0:
dest_dim = n_dims + dest_dim
assert 0 <= src_dim < n_dims and 0 <= dest_dim < n_dims
dims = list(range(n_dims))
del dims[src_dim]
permutation = []
ctr = 0
for i in range(n_dims):
if i == dest_dim:
permutation.append(src_dim)
else:
permutation.append(dims[ctr])
ctr += 1
x = x.permute(permutation)
if make_contiguous:
x = x.contiguous()
return x
class Codebook(nn.Module):
def __init__(self, n_codes, embedding_dim):
super().__init__()
self.register_buffer("embeddings", torch.randn(n_codes, embedding_dim))
self.register_buffer("N", torch.zeros(n_codes))
self.register_buffer("z_avg", self.embeddings.data.clone())
self.n_codes = n_codes
self.embedding_dim = embedding_dim
self._need_init = True
def _tile(self, x):
d, ew = x.shape
if d < self.n_codes:
n_repeats = (self.n_codes + d - 1) // d
std = 0.01 / np.sqrt(ew)
x = x.repeat(n_repeats, 1)
x = x + torch.randn_like(x) * std
return x
def _init_embeddings(self, z):
# z: [b, c, t, h, w]
self._need_init = False
flat_inputs = shift_dim(z, 1, -1).flatten(end_dim=-2)
y = self._tile(flat_inputs)
y.shape[0]
_k_rand = y[torch.randperm(y.shape[0])][: self.n_codes]
if dist.is_initialized():
dist.broadcast(_k_rand, 0)
self.embeddings.data.copy_(_k_rand)
self.z_avg.data.copy_(_k_rand)
self.N.data.copy_(torch.ones(self.n_codes))
def forward(self, z):
# z: [b, c, t, h, w]
if self._need_init and self.training:
self._init_embeddings(z)
flat_inputs = shift_dim(z, 1, -1).flatten(end_dim=-2)
distances = (
(flat_inputs**2).sum(dim=1, keepdim=True)
- 2 * flat_inputs @ self.embeddings.t()
+ (self.embeddings.t() ** 2).sum(dim=0, keepdim=True)
)
encoding_indices = torch.argmin(distances, dim=1)
encode_onehot = F.one_hot(encoding_indices, self.n_codes).type_as(flat_inputs)
encoding_indices = encoding_indices.view(z.shape[0], *z.shape[2:])
embeddings = F.embedding(encoding_indices, self.embeddings)
embeddings = shift_dim(embeddings, -1, 1)
commitment_loss = 0.25 * F.mse_loss(z, embeddings.detach())
# EMA codebook update
if self.training:
n_total = encode_onehot.sum(dim=0)
encode_sum = flat_inputs.t() @ encode_onehot
if dist.is_initialized():
dist.all_reduce(n_total)
dist.all_reduce(encode_sum)
self.N.data.mul_(0.99).add_(n_total, alpha=0.01)
self.z_avg.data.mul_(0.99).add_(encode_sum.t(), alpha=0.01)
n = self.N.sum()
weights = (self.N + 1e-7) / (n + self.n_codes * 1e-7) * n
encode_normalized = self.z_avg / weights.unsqueeze(1)
self.embeddings.data.copy_(encode_normalized)
y = self._tile(flat_inputs)
_k_rand = y[torch.randperm(y.shape[0])][: self.n_codes]
if dist.is_initialized():
dist.broadcast(_k_rand, 0)
usage = (self.N.view(self.n_codes, 1) >= 1).float()
self.embeddings.data.mul_(usage).add_(_k_rand * (1 - usage))
embeddings_st = (embeddings - z).detach() + z
avg_probs = torch.mean(encode_onehot, dim=0)
perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10)))
return dict(
embeddings=embeddings_st,
encodings=encoding_indices,
commitment_loss=commitment_loss,
perplexity=perplexity,
)
def dictionary_lookup(self, encodings):
embeddings = F.embedding(encodings, self.embeddings)
return embeddings
class ResnetBlock2D(Block):
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout):
super().__init__()
self.in_channels = in_channels
self.out_channels = in_channels if out_channels is None else out_channels
self.use_conv_shortcut = conv_shortcut
self.norm1 = Normalize(in_channels)
self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.norm2 = Normalize(out_channels)
self.dropout = torch.nn.Dropout(dropout)
self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
else:
self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
@video_to_image
def forward(self, x):
h = x
h = self.norm1(h)
h = nonlinearity(h)
h = self.conv1(h)
h = self.norm2(h)
h = nonlinearity(h)
h = self.dropout(h)
h = self.conv2(h)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
x = self.conv_shortcut(x)
else:
x = self.nin_shortcut(x)
x = x + h
return x
class ResnetBlock3D(Block):
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout):
super().__init__()
self.in_channels = in_channels
self.out_channels = in_channels if out_channels is None else out_channels
self.use_conv_shortcut = conv_shortcut
self.norm1 = Normalize(in_channels)
self.conv1 = CausalConv3d(in_channels, out_channels, 3, padding=1)
self.norm2 = Normalize(out_channels)
self.dropout = torch.nn.Dropout(dropout)
self.conv2 = CausalConv3d(out_channels, out_channels, 3, padding=1)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
self.conv_shortcut = CausalConv3d(in_channels, out_channels, 3, padding=1)
else:
self.nin_shortcut = CausalConv3d(in_channels, out_channels, 1, padding=0)
def forward(self, x):
h = x
h = self.norm1(h)
h = nonlinearity(h)
h = self.conv1(h)
h = self.norm2(h)
h = nonlinearity(h)
h = self.dropout(h)
h = self.conv2(h)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
x = self.conv_shortcut(x)
else:
x = self.nin_shortcut(x)
return x + h
class Upsample(Block):
def __init__(self, in_channels, out_channels):
super().__init__()
self.with_conv = True
if self.with_conv:
self.conv = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
@video_to_image
def forward(self, x):
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
if self.with_conv:
x = self.conv(x)
return x
class Downsample(Block):
def __init__(self, in_channels, out_channels):
super().__init__()
self.with_conv = True
if self.with_conv:
# no asymmetric padding in torch conv, must do it ourselves
self.conv = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=0)
@video_to_image
def forward(self, x):
if self.with_conv:
pad = (0, 1, 0, 1)
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
x = self.conv(x)
else:
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
return x
class SpatialDownsample2x(Block):
def __init__(
self,
chan_in,
chan_out,
kernel_size: Union[int, Tuple[int]] = (3, 3),
stride: Union[int, Tuple[int]] = (2, 2),
):
super().__init__()
kernel_size = cast_tuple(kernel_size, 2)
stride = cast_tuple(stride, 2)
self.chan_in = chan_in
self.chan_out = chan_out
self.kernel_size = kernel_size
self.conv = CausalConv3d(self.chan_in, self.chan_out, (1,) + self.kernel_size, stride=(1,) + stride, padding=0)
def forward(self, x):
pad = (0, 1, 0, 1, 0, 0)
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
x = self.conv(x)
return x
class SpatialUpsample2x(Block):
def __init__(
self,
chan_in,
chan_out,
kernel_size: Union[int, Tuple[int]] = (3, 3),
stride: Union[int, Tuple[int]] = (1, 1),
):
super().__init__()
self.chan_in = chan_in
self.chan_out = chan_out
self.kernel_size = kernel_size
self.conv = CausalConv3d(self.chan_in, self.chan_out, (1,) + self.kernel_size, stride=(1,) + stride, padding=1)
def forward(self, x):
t = x.shape[2]
x = rearrange(x, "b c t h w -> b (c t) h w")
x = F.interpolate(x, scale_factor=(2, 2), mode="nearest")
x = rearrange(x, "b (c t) h w -> b c t h w", t=t)
x = self.conv(x)
return x
class TimeDownsample2x(Block):
def __init__(self, chan_in, chan_out, kernel_size: int = 3):
super().__init__()
self.kernel_size = kernel_size
self.conv = nn.AvgPool3d((kernel_size, 1, 1), stride=(2, 1, 1))
def forward(self, x):
first_frame_pad = x[:, :, :1, :, :].repeat((1, 1, self.kernel_size - 1, 1, 1))
x = torch.concatenate((first_frame_pad, x), dim=2)
return self.conv(x)
class TimeUpsample2x(Block):
def __init__(self, chan_in, chan_out):
super().__init__()
def forward(self, x):
if x.size(2) > 1:
x, x_ = x[:, :, :1], x[:, :, 1:]
x_ = F.interpolate(x_, scale_factor=(2, 1, 1), mode="trilinear")
x = torch.concat([x, x_], dim=2)
return x
class TimeDownsampleRes2x(nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size: int = 3,
mix_factor: float = 2.0,
):
super().__init__()
self.kernel_size = cast_tuple(kernel_size, 3)
self.avg_pool = nn.AvgPool3d((kernel_size, 1, 1), stride=(2, 1, 1))
self.conv = nn.Conv3d(in_channels, out_channels, self.kernel_size, stride=(2, 1, 1), padding=(0, 1, 1))
self.mix_factor = torch.nn.Parameter(torch.Tensor([mix_factor]))
def forward(self, x):
alpha = torch.sigmoid(self.mix_factor)
first_frame_pad = x[:, :, :1, :, :].repeat((1, 1, self.kernel_size[0] - 1, 1, 1))
x = torch.concatenate((first_frame_pad, x), dim=2)
return alpha * self.avg_pool(x) + (1 - alpha) * self.conv(x)
class TimeUpsampleRes2x(nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size: int = 3,
mix_factor: float = 2.0,
):
super().__init__()
self.conv = CausalConv3d(in_channels, out_channels, kernel_size, padding=1)
self.mix_factor = torch.nn.Parameter(torch.Tensor([mix_factor]))
def forward(self, x):
alpha = torch.sigmoid(self.mix_factor)
if x.size(2) > 1:
x, x_ = x[:, :, :1], x[:, :, 1:]
x_ = F.interpolate(x_, scale_factor=(2, 1, 1), mode="trilinear")
x = torch.concat([x, x_], dim=2)
return alpha * x + (1 - alpha) * self.conv(x)
class TimeDownsampleResAdv2x(nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size: int = 3,
mix_factor: float = 1.5,
):
super().__init__()
self.kernel_size = cast_tuple(kernel_size, 3)
self.avg_pool = nn.AvgPool3d((kernel_size, 1, 1), stride=(2, 1, 1))
self.attn = TemporalAttnBlock(in_channels)
self.res = ResnetBlock3D(in_channels=in_channels, out_channels=in_channels, dropout=0.0)
self.conv = nn.Conv3d(in_channels, out_channels, self.kernel_size, stride=(2, 1, 1), padding=(0, 1, 1))
self.mix_factor = torch.nn.Parameter(torch.Tensor([mix_factor]))
def forward(self, x):
first_frame_pad = x[:, :, :1, :, :].repeat((1, 1, self.kernel_size[0] - 1, 1, 1))
x = torch.concatenate((first_frame_pad, x), dim=2)
alpha = torch.sigmoid(self.mix_factor)
return alpha * self.avg_pool(x) + (1 - alpha) * self.conv(self.attn((self.res(x))))
class TimeUpsampleResAdv2x(nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size: int = 3,
mix_factor: float = 1.5,
):
super().__init__()
self.res = ResnetBlock3D(in_channels=in_channels, out_channels=in_channels, dropout=0.0)
self.attn = TemporalAttnBlock(in_channels)
self.norm = Normalize(in_channels=in_channels)
self.conv = CausalConv3d(in_channels, out_channels, kernel_size, padding=1)
self.mix_factor = torch.nn.Parameter(torch.Tensor([mix_factor]))
def forward(self, x):
if x.size(2) > 1:
x, x_ = x[:, :, :1], x[:, :, 1:]
x_ = F.interpolate(x_, scale_factor=(2, 1, 1), mode="trilinear")
x = torch.concat([x, x_], dim=2)
alpha = torch.sigmoid(self.mix_factor)
return alpha * x + (1 - alpha) * self.conv(self.attn(self.res(x)))