import os os.environ["GRADIO_TEMP_DIR"] = os.path.join(os.getcwd(), ".tmp_outputs") os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True" import logging import uuid import GPUtil import gradio as gr import psutil import spaces import torch from videosys import CogVideoXConfig, CogVideoXPABConfig, VideoSysEngine logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) dtype = torch.float16 def load_model(enable_video_sys=False, pab_threshold=[100, 850], pab_range=2): pab_config = CogVideoXPABConfig(spatial_threshold=pab_threshold, spatial_range=pab_range) config = CogVideoXConfig(world_size=1, enable_pab=enable_video_sys, pab_config=pab_config) engine = VideoSysEngine(config) return engine def generate(engine, prompt, num_inference_steps=50, guidance_scale=6.0): video = engine.generate(prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale).video[0] unique_filename = f"{uuid.uuid4().hex}.mp4" output_path = os.path.join("./.tmp_outputs", unique_filename) engine.save_video(video, output_path) return output_path def get_server_status(): cpu_percent = psutil.cpu_percent() memory = psutil.virtual_memory() disk = psutil.disk_usage("/") gpus = GPUtil.getGPUs() gpu_info = [] for gpu in gpus: gpu_info.append( { "id": gpu.id, "name": gpu.name, "load": f"{gpu.load*100:.1f}%", "memory_used": f"{gpu.memoryUsed}MB", "memory_total": f"{gpu.memoryTotal}MB", } ) return {"cpu": f"{cpu_percent}%", "memory": f"{memory.percent}%", "disk": f"{disk.percent}%", "gpu": gpu_info} @spaces.GPU(duration=120) def generate_vanilla(prompt, num_inference_steps, guidance_scale, progress=gr.Progress(track_tqdm=True)): engine = load_model() video_path = generate(engine, prompt, num_inference_steps, guidance_scale) return video_path @spaces.GPU(duration=120) def generate_vs( prompt, num_inference_steps, guidance_scale, threshold_start, threshold_end, gap, progress=gr.Progress(track_tqdm=True), ): threshold = [int(threshold_end), int(threshold_start)] gap = int(gap) engine = load_model(enable_video_sys=True, pab_threshold=threshold, pab_range=gap) video_path = generate(engine, prompt, num_inference_steps, guidance_scale) return video_path def get_server_status(): cpu_percent = psutil.cpu_percent() memory = psutil.virtual_memory() disk = psutil.disk_usage("/") try: gpus = GPUtil.getGPUs() if gpus: gpu = gpus[0] gpu_memory = f"{gpu.memoryUsed}/{gpu.memoryTotal}MB ({gpu.memoryUtil*100:.1f}%)" else: gpu_memory = "No GPU found" except: gpu_memory = "GPU information unavailable" return { "cpu": f"{cpu_percent}%", "memory": f"{memory.percent}%", "disk": f"{disk.percent}%", "gpu_memory": gpu_memory, } def update_server_status(): status = get_server_status() return (status["cpu"], status["memory"], status["disk"], status["gpu_memory"]) css = """ body { font-family: Arial, sans-serif; line-height: 1.6; color: #333; margin: 0 auto; padding: 20px; } .container { display: flex; flex-direction: column; gap: 10px; } .row { display: flex; flex-wrap: wrap; gap: 10px; } .column { flex: 1; min-width: 0; } .video-output { width: 100%; max-width: 720px; height: auto; margin: 0 auto; } .server-status { margin-top: 5px; padding: 5px; font-size: 0.8em; } .server-status h4 { margin: 0 0 3px 0; font-size: 0.9em; } .server-status .row { margin-bottom: 2px; } .server-status .textbox { min-height: unset !important; } .server-status .textbox input { padding: 1px 5px !important; height: 20px !important; font-size: 0.9em !important; } .server-status .textbox label { margin-bottom: 0 !important; font-size: 0.9em !important; line-height: 1.2 !important; } .server-status .textbox { gap: 0 !important; } .server-status .textbox input { margin-top: -2px !important; } @media (max-width: 768px) { .row { flex-direction: column; } .column { width: 100%; } } .video-output { width: 100%; height: auto; } } """ with gr.Blocks(css=css) as demo: gr.HTML( """