import os import gradio as gr import outetts from outetts.version.v2.interface import _DEFAULT_SPEAKERS import torch import spaces def get_available_speakers(): speakers = list(_DEFAULT_SPEAKERS.keys()) return speakers @spaces.GPU def generate_tts(text, temperature, repetition_penalty, speaker_selection, reference_audio): model_config = outetts.HFModelConfig_v2( model_path="OuteAI/OuteTTS-0.3-1B", tokenizer_path="OuteAI/OuteTTS-0.3-1B", dtype=torch.bfloat16, device="cuda" ) interface = outetts.InterfaceHF(model_version="0.3", cfg=model_config) try: # Validate inputs for custom speaker if reference_audio: speaker = interface.create_speaker(reference_audio) # Use selected default speaker elif speaker_selection and speaker_selection != "None": speaker = interface.load_default_speaker(speaker_selection) # No speaker - random characteristics else: speaker = None gen_cfg = outetts.GenerationConfig( text=text, temperature=temperature, repetition_penalty=repetition_penalty, max_length=4096, speaker=speaker, ) output = interface.generate(config=gen_cfg) # Verify output if output.audio is None: raise ValueError("Model failed to generate audio. This may be due to input length constraints or early EOS token.") # Save and return output output_path = "output.wav" output.save(output_path) return output_path, None except Exception as e: return None, str(e) # Custom CSS for 3D styling custom_css = """ .container { background: linear-gradient(145deg, #f3f4f6, #ffffff); border-radius: 20px; box-shadow: 10px 10px 20px #d1d1d1, -10px -10px 20px #ffffff; padding: 2rem; margin: 1rem; transition: all 0.3s ease; } .title { font-size: 2.5rem; font-weight: bold; color: #1a1a1a; text-align: center; margin-bottom: 2rem; text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.1); } .input-group { background: #ffffff; border-radius: 15px; padding: 1.5rem; margin: 1rem 0; box-shadow: inset 5px 5px 10px #e0e0e0, inset -5px -5px 10px #ffffff; } .button-3d { background: linear-gradient(145deg, #3b82f6, #2563eb); color: white; border: none; padding: 0.8rem 1.5rem; border-radius: 10px; font-weight: bold; cursor: pointer; transition: all 0.3s ease; box-shadow: 5px 5px 10px #d1d1d1, -5px -5px 10px #ffffff; } .button-3d:hover { transform: translateY(-2px); box-shadow: 7px 7px 15px #d1d1d1, -7px -7px 15px #ffffff; } .slider-3d { height: 12px; border-radius: 6px; background: linear-gradient(145deg, #e6e7eb, #ffffff); box-shadow: inset 3px 3px 6px #d1d1d1, inset -3px -3px 6px #ffffff; } .error-box { background: #fee2e2; border-left: 4px solid #ef4444; padding: 1rem; border-radius: 8px; margin: 1rem 0; } """ # Create the Gradio interface with 3D styling with gr.Blocks(css=custom_css) as demo: gr.Markdown('
Voice Clone Multilingual TTS
') error_box = gr.Textbox(label="Error Messages", visible=False, elem_classes="error-box") with gr.Row(elem_classes="container"): with gr.Column(): # Speaker selection with 3D styling speaker_dropdown = gr.Dropdown( choices=get_available_speakers(), value="en_male_1", label="Speaker Selection", elem_classes="input-group" ) text_input = gr.Textbox( label="Text to Synthesize", placeholder="Enter text here...", elem_classes="input-group" ) temperature = gr.Slider( 0.1, 1.0, value=0.1, label="Temperature (lower = more stable tone, higher = more expressive)", elem_classes="slider-3d" ) repetition_penalty = gr.Slider( 0.5, 2.0, value=1.1, label="Repetition Penalty", elem_classes="slider-3d" ) gr.Markdown(""" ### Voice Cloning Guidelines: - Use around 7-10 seconds of clear, noise-free audio - For transcription interface will use Whisper turbo to transcribe the audio file - Longer audio clips will reduce maximum output length - Custom speaker overrides speaker selection """, elem_classes="input-group") reference_audio = gr.Audio( label="Reference Audio (for voice cloning)", type="filepath", elem_classes="input-group" ) submit_button = gr.Button( "Generate Speech", elem_classes="button-3d" ) with gr.Column(): audio_output = gr.Audio( label="Generated Audio", type="filepath", elem_classes="input-group" ) submit_button.click( fn=generate_tts, inputs=[ text_input, temperature, repetition_penalty, speaker_dropdown, reference_audio, ], outputs=[audio_output, error_box] ).then( fn=lambda x: gr.update(visible=bool(x)), inputs=[error_box], outputs=[error_box] ) demo.launch()