Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
import os | |
import imageio | |
import torch | |
import torchvision.transforms.functional as F | |
import tqdm | |
from calculate_lpips import calculate_lpips | |
from calculate_psnr import calculate_psnr | |
from calculate_ssim import calculate_ssim | |
def load_videos(directory, video_ids, file_extension): | |
videos = [] | |
for video_id in video_ids: | |
video_path = os.path.join(directory, f"{video_id}.{file_extension}") | |
if os.path.exists(video_path): | |
video = load_video(video_path) # Define load_video based on how videos are stored | |
videos.append(video) | |
else: | |
raise ValueError(f"Video {video_id}.{file_extension} not found in {directory}") | |
return videos | |
def load_video(video_path): | |
""" | |
Load a video from the given path and convert it to a PyTorch tensor. | |
""" | |
# Read the video using imageio | |
reader = imageio.get_reader(video_path, "ffmpeg") | |
# Extract frames and convert to a list of tensors | |
frames = [] | |
for frame in reader: | |
# Convert the frame to a tensor and permute the dimensions to match (C, H, W) | |
frame_tensor = torch.tensor(frame).cuda().permute(2, 0, 1) | |
frames.append(frame_tensor) | |
# Stack the list of tensors into a single tensor with shape (T, C, H, W) | |
video_tensor = torch.stack(frames) | |
return video_tensor | |
def resize_video(video, target_height, target_width): | |
resized_frames = [] | |
for frame in video: | |
resized_frame = F.resize(frame, [target_height, target_width]) | |
resized_frames.append(resized_frame) | |
return torch.stack(resized_frames) | |
def preprocess_eval_video(eval_video, generated_video_shape): | |
T_gen, _, H_gen, W_gen = generated_video_shape | |
T_eval, _, H_eval, W_eval = eval_video.shape | |
if T_eval < T_gen: | |
raise ValueError(f"Eval video time steps ({T_eval}) are less than generated video time steps ({T_gen}).") | |
if H_eval < H_gen or W_eval < W_gen: | |
# Resize the video maintaining the aspect ratio | |
resize_height = max(H_gen, int(H_gen * (H_eval / W_eval))) | |
resize_width = max(W_gen, int(W_gen * (W_eval / H_eval))) | |
eval_video = resize_video(eval_video, resize_height, resize_width) | |
# Recalculate the dimensions | |
T_eval, _, H_eval, W_eval = eval_video.shape | |
# Center crop | |
start_h = (H_eval - H_gen) // 2 | |
start_w = (W_eval - W_gen) // 2 | |
cropped_video = eval_video[:T_gen, :, start_h : start_h + H_gen, start_w : start_w + W_gen] | |
return cropped_video | |
def main(args): | |
device = "cuda" | |
gt_video_dir = args.gt_video_dir | |
generated_video_dir = args.generated_video_dir | |
video_ids = [] | |
file_extension = "mp4" | |
for f in os.listdir(generated_video_dir): | |
if f.endswith(f".{file_extension}"): | |
video_ids.append(f.replace(f".{file_extension}", "")) | |
if not video_ids: | |
raise ValueError("No videos found in the generated video dataset. Exiting.") | |
print(f"Find {len(video_ids)} videos") | |
prompt_interval = 1 | |
batch_size = 16 | |
calculate_lpips_flag, calculate_psnr_flag, calculate_ssim_flag = True, True, True | |
lpips_results = [] | |
psnr_results = [] | |
ssim_results = [] | |
total_len = len(video_ids) // batch_size + (1 if len(video_ids) % batch_size != 0 else 0) | |
for idx, video_id in enumerate(tqdm.tqdm(range(total_len))): | |
gt_videos_tensor = [] | |
generated_videos_tensor = [] | |
for i in range(batch_size): | |
video_idx = idx * batch_size + i | |
if video_idx >= len(video_ids): | |
break | |
video_id = video_ids[video_idx] | |
generated_video = load_video(os.path.join(generated_video_dir, f"{video_id}.{file_extension}")) | |
generated_videos_tensor.append(generated_video) | |
eval_video = load_video(os.path.join(gt_video_dir, f"{video_id}.{file_extension}")) | |
gt_videos_tensor.append(eval_video) | |
gt_videos_tensor = (torch.stack(gt_videos_tensor) / 255.0).cpu() | |
generated_videos_tensor = (torch.stack(generated_videos_tensor) / 255.0).cpu() | |
if calculate_lpips_flag: | |
result = calculate_lpips(gt_videos_tensor, generated_videos_tensor, device=device) | |
result = result["value"].values() | |
result = sum(result) / len(result) | |
lpips_results.append(result) | |
if calculate_psnr_flag: | |
result = calculate_psnr(gt_videos_tensor, generated_videos_tensor) | |
result = result["value"].values() | |
result = sum(result) / len(result) | |
psnr_results.append(result) | |
if calculate_ssim_flag: | |
result = calculate_ssim(gt_videos_tensor, generated_videos_tensor) | |
result = result["value"].values() | |
result = sum(result) / len(result) | |
ssim_results.append(result) | |
if (idx + 1) % prompt_interval == 0: | |
out_str = "" | |
for results, name in zip([lpips_results, psnr_results, ssim_results], ["lpips", "psnr", "ssim"]): | |
result = sum(results) / len(results) | |
out_str += f"{name}: {result:.4f}, " | |
print(f"Processed {idx + 1} videos. {out_str[:-2]}") | |
out_str = "" | |
for results, name in zip([lpips_results, psnr_results, ssim_results], ["lpips", "psnr", "ssim"]): | |
result = sum(results) / len(results) | |
out_str += f"{name}: {result:.4f}, " | |
out_str = out_str[:-2] | |
# save | |
with open(f"./{os.path.basename(generated_video_dir)}.txt", "w+") as f: | |
f.write(out_str) | |
print(f"Processed all videos. {out_str}") | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--gt_video_dir", type=str) | |
parser.add_argument("--generated_video_dir", type=str) | |
args = parser.parse_args() | |
main(args) | |