Spaces:
Running
on
Zero
Running
on
Zero
# Adapted from Open-Sora-Plan | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
# -------------------------------------------------------- | |
# References: | |
# Open-Sora-Plan: https://github.com/PKU-YuanGroup/Open-Sora-Plan | |
# -------------------------------------------------------- | |
import torch | |
import torch.nn as nn | |
from einops import rearrange | |
from .block import Block | |
from .conv import CausalConv3d | |
from .normalize import Normalize | |
from .ops import video_to_image | |
class LinearAttention(Block): | |
def __init__(self, dim, heads=4, dim_head=32): | |
super().__init__() | |
self.heads = heads | |
hidden_dim = dim_head * heads | |
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False) | |
self.to_out = nn.Conv2d(hidden_dim, dim, 1) | |
def forward(self, x): | |
b, c, h, w = x.shape | |
qkv = self.to_qkv(x) | |
q, k, v = rearrange(qkv, "b (qkv heads c) h w -> qkv b heads c (h w)", heads=self.heads, qkv=3) | |
k = k.softmax(dim=-1) | |
context = torch.einsum("bhdn,bhen->bhde", k, v) | |
out = torch.einsum("bhde,bhdn->bhen", context, q) | |
out = rearrange(out, "b heads c (h w) -> b (heads c) h w", heads=self.heads, h=h, w=w) | |
return self.to_out(out) | |
class LinAttnBlock(LinearAttention): | |
"""to match AttnBlock usage""" | |
def __init__(self, in_channels): | |
super().__init__(dim=in_channels, heads=1, dim_head=in_channels) | |
class AttnBlock3D(Block): | |
"""Compatible with old versions, there are issues, use with caution.""" | |
def __init__(self, in_channels): | |
super().__init__() | |
self.in_channels = in_channels | |
self.norm = Normalize(in_channels) | |
self.q = CausalConv3d(in_channels, in_channels, kernel_size=1, stride=1) | |
self.k = CausalConv3d(in_channels, in_channels, kernel_size=1, stride=1) | |
self.v = CausalConv3d(in_channels, in_channels, kernel_size=1, stride=1) | |
self.proj_out = CausalConv3d(in_channels, in_channels, kernel_size=1, stride=1) | |
def forward(self, x): | |
h_ = x | |
h_ = self.norm(h_) | |
q = self.q(h_) | |
k = self.k(h_) | |
v = self.v(h_) | |
# compute attention | |
b, c, t, h, w = q.shape | |
q = q.reshape(b * t, c, h * w) | |
q = q.permute(0, 2, 1) # b,hw,c | |
k = k.reshape(b * t, c, h * w) # b,c,hw | |
w_ = torch.bmm(q, k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] | |
w_ = w_ * (int(c) ** (-0.5)) | |
w_ = torch.nn.functional.softmax(w_, dim=2) | |
# attend to values | |
v = v.reshape(b * t, c, h * w) | |
w_ = w_.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q) | |
h_ = torch.bmm(v, w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] | |
h_ = h_.reshape(b, c, t, h, w) | |
h_ = self.proj_out(h_) | |
return x + h_ | |
class AttnBlock3DFix(nn.Module): | |
""" | |
Thanks to https://github.com/PKU-YuanGroup/Open-Sora-Plan/pull/172. | |
""" | |
def __init__(self, in_channels): | |
super().__init__() | |
self.in_channels = in_channels | |
self.norm = Normalize(in_channels) | |
self.q = CausalConv3d(in_channels, in_channels, kernel_size=1, stride=1) | |
self.k = CausalConv3d(in_channels, in_channels, kernel_size=1, stride=1) | |
self.v = CausalConv3d(in_channels, in_channels, kernel_size=1, stride=1) | |
self.proj_out = CausalConv3d(in_channels, in_channels, kernel_size=1, stride=1) | |
def forward(self, x): | |
h_ = x | |
h_ = self.norm(h_) | |
q = self.q(h_) | |
k = self.k(h_) | |
v = self.v(h_) | |
# compute attention | |
# q: (b c t h w) -> (b t c h w) -> (b*t c h*w) -> (b*t h*w c) | |
b, c, t, h, w = q.shape | |
q = q.permute(0, 2, 1, 3, 4) | |
q = q.reshape(b * t, c, h * w) | |
q = q.permute(0, 2, 1) | |
# k: (b c t h w) -> (b t c h w) -> (b*t c h*w) | |
k = k.permute(0, 2, 1, 3, 4) | |
k = k.reshape(b * t, c, h * w) | |
# w: (b*t hw hw) | |
w_ = torch.bmm(q, k) | |
w_ = w_ * (int(c) ** (-0.5)) | |
w_ = torch.nn.functional.softmax(w_, dim=2) | |
# attend to values | |
# v: (b c t h w) -> (b t c h w) -> (bt c hw) | |
# w_: (bt hw hw) -> (bt hw hw) | |
v = v.permute(0, 2, 1, 3, 4) | |
v = v.reshape(b * t, c, h * w) | |
w_ = w_.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q) | |
h_ = torch.bmm(v, w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] | |
# h_: (b*t c hw) -> (b t c h w) -> (b c t h w) | |
h_ = h_.reshape(b, t, c, h, w) | |
h_ = h_.permute(0, 2, 1, 3, 4) | |
h_ = self.proj_out(h_) | |
return x + h_ | |
class AttnBlock(Block): | |
def __init__(self, in_channels): | |
super().__init__() | |
self.in_channels = in_channels | |
self.norm = Normalize(in_channels) | |
self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) | |
self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) | |
self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) | |
self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) | |
def forward(self, x): | |
h_ = x | |
h_ = self.norm(h_) | |
q = self.q(h_) | |
k = self.k(h_) | |
v = self.v(h_) | |
# compute attention | |
b, c, h, w = q.shape | |
q = q.reshape(b, c, h * w) | |
q = q.permute(0, 2, 1) # b,hw,c | |
k = k.reshape(b, c, h * w) # b,c,hw | |
w_ = torch.bmm(q, k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] | |
w_ = w_ * (int(c) ** (-0.5)) | |
w_ = torch.nn.functional.softmax(w_, dim=2) | |
# attend to values | |
v = v.reshape(b, c, h * w) | |
w_ = w_.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q) | |
h_ = torch.bmm(v, w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] | |
h_ = h_.reshape(b, c, h, w) | |
h_ = self.proj_out(h_) | |
return x + h_ | |
class TemporalAttnBlock(Block): | |
def __init__(self, in_channels): | |
super().__init__() | |
self.in_channels = in_channels | |
self.norm = Normalize(in_channels) | |
self.q = torch.nn.Conv3d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) | |
self.k = torch.nn.Conv3d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) | |
self.v = torch.nn.Conv3d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) | |
self.proj_out = torch.nn.Conv3d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) | |
def forward(self, x): | |
h_ = x | |
h_ = self.norm(h_) | |
q = self.q(h_) | |
k = self.k(h_) | |
v = self.v(h_) | |
# compute attention | |
b, c, t, h, w = q.shape | |
q = rearrange(q, "b c t h w -> (b h w) t c") | |
k = rearrange(k, "b c t h w -> (b h w) c t") | |
v = rearrange(v, "b c t h w -> (b h w) c t") | |
w_ = torch.bmm(q, k) | |
w_ = w_ * (int(c) ** (-0.5)) | |
w_ = torch.nn.functional.softmax(w_, dim=2) | |
# attend to values | |
w_ = w_.permute(0, 2, 1) | |
h_ = torch.bmm(v, w_) | |
h_ = rearrange(h_, "(b h w) c t -> b c t h w", h=h, w=w) | |
h_ = self.proj_out(h_) | |
return x + h_ | |
def make_attn(in_channels, attn_type="vanilla"): | |
assert attn_type in ["vanilla", "linear", "none", "vanilla3D"], f"attn_type {attn_type} unknown" | |
print(f"making attention of type '{attn_type}' with {in_channels} in_channels") | |
print(attn_type) | |
if attn_type == "vanilla": | |
return AttnBlock(in_channels) | |
elif attn_type == "vanilla3D": | |
return AttnBlock3D(in_channels) | |
elif attn_type == "none": | |
return nn.Identity(in_channels) | |
else: | |
return LinAttnBlock(in_channels) | |