Spaces:
Running
on
Zero
Running
on
Zero
# Adapted from OpenSora | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
# -------------------------------------------------------- | |
# References: | |
# OpenSora: https://github.com/hpcaitech/Open-Sora | |
# -------------------------------------------------------- | |
import functools | |
import math | |
from typing import Optional | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
from einops import rearrange | |
from timm.models.vision_transformer import Mlp | |
approx_gelu = lambda: nn.GELU(approximate="tanh") | |
class LlamaRMSNorm(nn.Module): | |
def __init__(self, hidden_size, eps=1e-6): | |
""" | |
LlamaRMSNorm is equivalent to T5LayerNorm | |
""" | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(hidden_size)) | |
self.variance_epsilon = eps | |
def forward(self, hidden_states): | |
input_dtype = hidden_states.dtype | |
hidden_states = hidden_states.to(torch.float32) | |
variance = hidden_states.pow(2).mean(-1, keepdim=True) | |
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | |
return self.weight * hidden_states.to(input_dtype) | |
def get_layernorm(hidden_size: torch.Tensor, eps: float, affine: bool): | |
return nn.LayerNorm(hidden_size, eps, elementwise_affine=affine) | |
def t2i_modulate(x, shift, scale): | |
return x * (1 + scale) + shift | |
# =============================================== | |
# General-purpose Layers | |
# =============================================== | |
class PatchEmbed3D(nn.Module): | |
"""Video to Patch Embedding. | |
Args: | |
patch_size (int): Patch token size. Default: (2,4,4). | |
in_chans (int): Number of input video channels. Default: 3. | |
embed_dim (int): Number of linear projection output channels. Default: 96. | |
norm_layer (nn.Module, optional): Normalization layer. Default: None | |
""" | |
def __init__( | |
self, | |
patch_size=(2, 4, 4), | |
in_chans=3, | |
embed_dim=96, | |
norm_layer=None, | |
flatten=True, | |
): | |
super().__init__() | |
self.patch_size = patch_size | |
self.flatten = flatten | |
self.in_chans = in_chans | |
self.embed_dim = embed_dim | |
self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) | |
if norm_layer is not None: | |
self.norm = norm_layer(embed_dim) | |
else: | |
self.norm = None | |
def forward(self, x): | |
"""Forward function.""" | |
# padding | |
_, _, D, H, W = x.size() | |
if W % self.patch_size[2] != 0: | |
x = F.pad(x, (0, self.patch_size[2] - W % self.patch_size[2])) | |
if H % self.patch_size[1] != 0: | |
x = F.pad(x, (0, 0, 0, self.patch_size[1] - H % self.patch_size[1])) | |
if D % self.patch_size[0] != 0: | |
x = F.pad(x, (0, 0, 0, 0, 0, self.patch_size[0] - D % self.patch_size[0])) | |
x = self.proj(x) # (B C T H W) | |
if self.norm is not None: | |
D, Wh, Ww = x.size(2), x.size(3), x.size(4) | |
x = x.flatten(2).transpose(1, 2) | |
x = self.norm(x) | |
x = x.transpose(1, 2).view(-1, self.embed_dim, D, Wh, Ww) | |
if self.flatten: | |
x = x.flatten(2).transpose(1, 2) # BCTHW -> BNC | |
return x | |
class Attention(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
num_heads: int = 8, | |
qkv_bias: bool = False, | |
qk_norm: bool = False, | |
attn_drop: float = 0.0, | |
proj_drop: float = 0.0, | |
norm_layer: nn.Module = LlamaRMSNorm, | |
enable_flash_attn: bool = False, | |
rope=None, | |
qk_norm_legacy: bool = False, | |
) -> None: | |
super().__init__() | |
assert dim % num_heads == 0, "dim should be divisible by num_heads" | |
self.dim = dim | |
self.num_heads = num_heads | |
self.head_dim = dim // num_heads | |
self.scale = self.head_dim**-0.5 | |
self.enable_flash_attn = enable_flash_attn | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() | |
self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() | |
self.qk_norm_legacy = qk_norm_legacy | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
self.rope = False | |
if rope is not None: | |
self.rope = True | |
self.rotary_emb = rope | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
B, N, C = x.shape | |
# flash attn is not memory efficient for small sequences, this is empirical | |
enable_flash_attn = self.enable_flash_attn and (N > B) | |
qkv = self.qkv(x) | |
qkv_shape = (B, N, 3, self.num_heads, self.head_dim) | |
qkv = qkv.view(qkv_shape).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv.unbind(0) | |
if self.qk_norm_legacy: | |
# WARNING: this may be a bug | |
if self.rope: | |
q = self.rotary_emb(q) | |
k = self.rotary_emb(k) | |
q, k = self.q_norm(q), self.k_norm(k) | |
else: | |
q, k = self.q_norm(q), self.k_norm(k) | |
if self.rope: | |
q = self.rotary_emb(q) | |
k = self.rotary_emb(k) | |
if enable_flash_attn: | |
from flash_attn import flash_attn_func | |
# (B, #heads, N, #dim) -> (B, N, #heads, #dim) | |
q = q.permute(0, 2, 1, 3) | |
k = k.permute(0, 2, 1, 3) | |
v = v.permute(0, 2, 1, 3) | |
x = flash_attn_func( | |
q, | |
k, | |
v, | |
dropout_p=self.attn_drop.p if self.training else 0.0, | |
softmax_scale=self.scale, | |
) | |
else: | |
dtype = q.dtype | |
q = q * self.scale | |
attn = q @ k.transpose(-2, -1) # translate attn to float32 | |
attn = attn.to(torch.float32) | |
attn = attn.softmax(dim=-1) | |
attn = attn.to(dtype) # cast back attn to original dtype | |
attn = self.attn_drop(attn) | |
x = attn @ v | |
x_output_shape = (B, N, C) | |
if not enable_flash_attn: | |
x = x.transpose(1, 2) | |
x = x.reshape(x_output_shape) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class MultiHeadCrossAttention(nn.Module): | |
def __init__(self, d_model, num_heads, attn_drop=0.0, proj_drop=0.0): | |
super(MultiHeadCrossAttention, self).__init__() | |
assert d_model % num_heads == 0, "d_model must be divisible by num_heads" | |
self.d_model = d_model | |
self.num_heads = num_heads | |
self.head_dim = d_model // num_heads | |
self.q_linear = nn.Linear(d_model, d_model) | |
self.kv_linear = nn.Linear(d_model, d_model * 2) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(d_model, d_model) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, x, cond, mask=None): | |
# query/value: img tokens; key: condition; mask: if padding tokens | |
B, N, C = x.shape | |
q = self.q_linear(x).view(1, -1, self.num_heads, self.head_dim) | |
kv = self.kv_linear(cond).view(1, -1, 2, self.num_heads, self.head_dim) | |
k, v = kv.unbind(2) | |
attn_bias = None | |
# TODO: support torch computation | |
import xformers.ops | |
if mask is not None: | |
attn_bias = xformers.ops.fmha.BlockDiagonalMask.from_seqlens([N] * B, mask) | |
x = xformers.ops.memory_efficient_attention(q, k, v, p=self.attn_drop.p, attn_bias=attn_bias) | |
x = x.view(B, -1, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class T2IFinalLayer(nn.Module): | |
""" | |
The final layer of PixArt. | |
""" | |
def __init__(self, hidden_size, num_patch, out_channels, d_t=None, d_s=None): | |
super().__init__() | |
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.linear = nn.Linear(hidden_size, num_patch * out_channels, bias=True) | |
self.scale_shift_table = nn.Parameter(torch.randn(2, hidden_size) / hidden_size**0.5) | |
self.out_channels = out_channels | |
self.d_t = d_t | |
self.d_s = d_s | |
def t_mask_select(self, x_mask, x, masked_x, T, S): | |
# x: [B, (T, S), C] | |
# mased_x: [B, (T, S), C] | |
# x_mask: [B, T] | |
x = rearrange(x, "B (T S) C -> B T S C", T=T, S=S) | |
masked_x = rearrange(masked_x, "B (T S) C -> B T S C", T=T, S=S) | |
x = torch.where(x_mask[:, :, None, None], x, masked_x) | |
x = rearrange(x, "B T S C -> B (T S) C") | |
return x | |
def forward(self, x, t, x_mask=None, t0=None, T=None, S=None): | |
if T is None: | |
T = self.d_t | |
if S is None: | |
S = self.d_s | |
shift, scale = (self.scale_shift_table[None] + t[:, None]).chunk(2, dim=1) | |
x = t2i_modulate(self.norm_final(x), shift, scale) | |
if x_mask is not None: | |
shift_zero, scale_zero = (self.scale_shift_table[None] + t0[:, None]).chunk(2, dim=1) | |
x_zero = t2i_modulate(self.norm_final(x), shift_zero, scale_zero) | |
x = self.t_mask_select(x_mask, x, x_zero, T, S) | |
x = self.linear(x) | |
return x | |
# =============================================== | |
# Embedding Layers for Timesteps and Class Labels | |
# =============================================== | |
class TimestepEmbedder(nn.Module): | |
""" | |
Embeds scalar timesteps into vector representations. | |
""" | |
def __init__(self, hidden_size, frequency_embedding_size=256): | |
super().__init__() | |
self.mlp = nn.Sequential( | |
nn.Linear(frequency_embedding_size, hidden_size, bias=True), | |
nn.SiLU(), | |
nn.Linear(hidden_size, hidden_size, bias=True), | |
) | |
self.frequency_embedding_size = frequency_embedding_size | |
def timestep_embedding(t, dim, max_period=10000): | |
""" | |
Create sinusoidal timestep embeddings. | |
:param t: a 1-D Tensor of N indices, one per batch element. | |
These may be fractional. | |
:param dim: the dimension of the output. | |
:param max_period: controls the minimum frequency of the embeddings. | |
:return: an (N, D) Tensor of positional embeddings. | |
""" | |
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py | |
half = dim // 2 | |
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half) | |
freqs = freqs.to(device=t.device) | |
args = t[:, None].float() * freqs[None] | |
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
if dim % 2: | |
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) | |
return embedding | |
def forward(self, t, dtype): | |
t_freq = self.timestep_embedding(t, self.frequency_embedding_size) | |
if t_freq.dtype != dtype: | |
t_freq = t_freq.to(dtype) | |
t_emb = self.mlp(t_freq) | |
return t_emb | |
class SizeEmbedder(TimestepEmbedder): | |
""" | |
Embeds scalar timesteps into vector representations. | |
""" | |
def __init__(self, hidden_size, frequency_embedding_size=256): | |
super().__init__(hidden_size=hidden_size, frequency_embedding_size=frequency_embedding_size) | |
self.mlp = nn.Sequential( | |
nn.Linear(frequency_embedding_size, hidden_size, bias=True), | |
nn.SiLU(), | |
nn.Linear(hidden_size, hidden_size, bias=True), | |
) | |
self.frequency_embedding_size = frequency_embedding_size | |
self.outdim = hidden_size | |
def forward(self, s, bs): | |
if s.ndim == 1: | |
s = s[:, None] | |
assert s.ndim == 2 | |
if s.shape[0] != bs: | |
s = s.repeat(bs // s.shape[0], 1) | |
assert s.shape[0] == bs | |
b, dims = s.shape[0], s.shape[1] | |
s = rearrange(s, "b d -> (b d)") | |
s_freq = self.timestep_embedding(s, self.frequency_embedding_size).to(self.dtype) | |
s_emb = self.mlp(s_freq) | |
s_emb = rearrange(s_emb, "(b d) d2 -> b (d d2)", b=b, d=dims, d2=self.outdim) | |
return s_emb | |
def dtype(self): | |
return next(self.parameters()).dtype | |
class CaptionEmbedder(nn.Module): | |
""" | |
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. | |
""" | |
def __init__( | |
self, | |
in_channels, | |
hidden_size, | |
uncond_prob, | |
act_layer=nn.GELU(approximate="tanh"), | |
token_num=120, | |
): | |
super().__init__() | |
self.y_proj = Mlp( | |
in_features=in_channels, | |
hidden_features=hidden_size, | |
out_features=hidden_size, | |
act_layer=act_layer, | |
drop=0, | |
) | |
self.register_buffer( | |
"y_embedding", | |
torch.randn(token_num, in_channels) / in_channels**0.5, | |
) | |
self.uncond_prob = uncond_prob | |
def token_drop(self, caption, force_drop_ids=None): | |
""" | |
Drops labels to enable classifier-free guidance. | |
""" | |
if force_drop_ids is None: | |
drop_ids = torch.rand(caption.shape[0]).cuda() < self.uncond_prob | |
else: | |
drop_ids = force_drop_ids == 1 | |
caption = torch.where(drop_ids[:, None, None, None], self.y_embedding, caption) | |
return caption | |
def forward(self, caption, train, force_drop_ids=None): | |
if train: | |
assert caption.shape[2:] == self.y_embedding.shape | |
use_dropout = self.uncond_prob > 0 | |
if (train and use_dropout) or (force_drop_ids is not None): | |
caption = self.token_drop(caption, force_drop_ids) | |
caption = self.y_proj(caption) | |
return caption | |
class PositionEmbedding2D(nn.Module): | |
def __init__(self, dim: int) -> None: | |
super().__init__() | |
self.dim = dim | |
assert dim % 4 == 0, "dim must be divisible by 4" | |
half_dim = dim // 2 | |
inv_freq = 1.0 / (10000 ** (torch.arange(0, half_dim, 2).float() / half_dim)) | |
self.register_buffer("inv_freq", inv_freq, persistent=False) | |
def _get_sin_cos_emb(self, t: torch.Tensor): | |
out = torch.einsum("i,d->id", t, self.inv_freq) | |
emb_cos = torch.cos(out) | |
emb_sin = torch.sin(out) | |
return torch.cat((emb_sin, emb_cos), dim=-1) | |
def _get_cached_emb( | |
self, | |
device: torch.device, | |
dtype: torch.dtype, | |
h: int, | |
w: int, | |
scale: float = 1.0, | |
base_size: Optional[int] = None, | |
): | |
grid_h = torch.arange(h, device=device) / scale | |
grid_w = torch.arange(w, device=device) / scale | |
if base_size is not None: | |
grid_h *= base_size / h | |
grid_w *= base_size / w | |
grid_h, grid_w = torch.meshgrid( | |
grid_w, | |
grid_h, | |
indexing="ij", | |
) # here w goes first | |
grid_h = grid_h.t().reshape(-1) | |
grid_w = grid_w.t().reshape(-1) | |
emb_h = self._get_sin_cos_emb(grid_h) | |
emb_w = self._get_sin_cos_emb(grid_w) | |
return torch.concat([emb_h, emb_w], dim=-1).unsqueeze(0).to(dtype) | |
def forward( | |
self, | |
x: torch.Tensor, | |
h: int, | |
w: int, | |
scale: Optional[float] = 1.0, | |
base_size: Optional[int] = None, | |
) -> torch.Tensor: | |
return self._get_cached_emb(x.device, x.dtype, h, w, scale, base_size) | |