zxl
first commit
07c6a04
raw
history blame
15.6 kB
# Adapted from OpenSora
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# OpenSora: https://github.com/hpcaitech/Open-Sora
# --------------------------------------------------------
import functools
import math
from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint
from einops import rearrange
from timm.models.vision_transformer import Mlp
approx_gelu = lambda: nn.GELU(approximate="tanh")
class LlamaRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
LlamaRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def get_layernorm(hidden_size: torch.Tensor, eps: float, affine: bool):
return nn.LayerNorm(hidden_size, eps, elementwise_affine=affine)
def t2i_modulate(x, shift, scale):
return x * (1 + scale) + shift
# ===============================================
# General-purpose Layers
# ===============================================
class PatchEmbed3D(nn.Module):
"""Video to Patch Embedding.
Args:
patch_size (int): Patch token size. Default: (2,4,4).
in_chans (int): Number of input video channels. Default: 3.
embed_dim (int): Number of linear projection output channels. Default: 96.
norm_layer (nn.Module, optional): Normalization layer. Default: None
"""
def __init__(
self,
patch_size=(2, 4, 4),
in_chans=3,
embed_dim=96,
norm_layer=None,
flatten=True,
):
super().__init__()
self.patch_size = patch_size
self.flatten = flatten
self.in_chans = in_chans
self.embed_dim = embed_dim
self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
if norm_layer is not None:
self.norm = norm_layer(embed_dim)
else:
self.norm = None
def forward(self, x):
"""Forward function."""
# padding
_, _, D, H, W = x.size()
if W % self.patch_size[2] != 0:
x = F.pad(x, (0, self.patch_size[2] - W % self.patch_size[2]))
if H % self.patch_size[1] != 0:
x = F.pad(x, (0, 0, 0, self.patch_size[1] - H % self.patch_size[1]))
if D % self.patch_size[0] != 0:
x = F.pad(x, (0, 0, 0, 0, 0, self.patch_size[0] - D % self.patch_size[0]))
x = self.proj(x) # (B C T H W)
if self.norm is not None:
D, Wh, Ww = x.size(2), x.size(3), x.size(4)
x = x.flatten(2).transpose(1, 2)
x = self.norm(x)
x = x.transpose(1, 2).view(-1, self.embed_dim, D, Wh, Ww)
if self.flatten:
x = x.flatten(2).transpose(1, 2) # BCTHW -> BNC
return x
class Attention(nn.Module):
def __init__(
self,
dim: int,
num_heads: int = 8,
qkv_bias: bool = False,
qk_norm: bool = False,
attn_drop: float = 0.0,
proj_drop: float = 0.0,
norm_layer: nn.Module = LlamaRMSNorm,
enable_flash_attn: bool = False,
rope=None,
qk_norm_legacy: bool = False,
) -> None:
super().__init__()
assert dim % num_heads == 0, "dim should be divisible by num_heads"
self.dim = dim
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.scale = self.head_dim**-0.5
self.enable_flash_attn = enable_flash_attn
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
self.qk_norm_legacy = qk_norm_legacy
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.rope = False
if rope is not None:
self.rope = True
self.rotary_emb = rope
def forward(self, x: torch.Tensor) -> torch.Tensor:
B, N, C = x.shape
# flash attn is not memory efficient for small sequences, this is empirical
enable_flash_attn = self.enable_flash_attn and (N > B)
qkv = self.qkv(x)
qkv_shape = (B, N, 3, self.num_heads, self.head_dim)
qkv = qkv.view(qkv_shape).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0)
if self.qk_norm_legacy:
# WARNING: this may be a bug
if self.rope:
q = self.rotary_emb(q)
k = self.rotary_emb(k)
q, k = self.q_norm(q), self.k_norm(k)
else:
q, k = self.q_norm(q), self.k_norm(k)
if self.rope:
q = self.rotary_emb(q)
k = self.rotary_emb(k)
if enable_flash_attn:
from flash_attn import flash_attn_func
# (B, #heads, N, #dim) -> (B, N, #heads, #dim)
q = q.permute(0, 2, 1, 3)
k = k.permute(0, 2, 1, 3)
v = v.permute(0, 2, 1, 3)
x = flash_attn_func(
q,
k,
v,
dropout_p=self.attn_drop.p if self.training else 0.0,
softmax_scale=self.scale,
)
else:
dtype = q.dtype
q = q * self.scale
attn = q @ k.transpose(-2, -1) # translate attn to float32
attn = attn.to(torch.float32)
attn = attn.softmax(dim=-1)
attn = attn.to(dtype) # cast back attn to original dtype
attn = self.attn_drop(attn)
x = attn @ v
x_output_shape = (B, N, C)
if not enable_flash_attn:
x = x.transpose(1, 2)
x = x.reshape(x_output_shape)
x = self.proj(x)
x = self.proj_drop(x)
return x
class MultiHeadCrossAttention(nn.Module):
def __init__(self, d_model, num_heads, attn_drop=0.0, proj_drop=0.0):
super(MultiHeadCrossAttention, self).__init__()
assert d_model % num_heads == 0, "d_model must be divisible by num_heads"
self.d_model = d_model
self.num_heads = num_heads
self.head_dim = d_model // num_heads
self.q_linear = nn.Linear(d_model, d_model)
self.kv_linear = nn.Linear(d_model, d_model * 2)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(d_model, d_model)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, cond, mask=None):
# query/value: img tokens; key: condition; mask: if padding tokens
B, N, C = x.shape
q = self.q_linear(x).view(1, -1, self.num_heads, self.head_dim)
kv = self.kv_linear(cond).view(1, -1, 2, self.num_heads, self.head_dim)
k, v = kv.unbind(2)
attn_bias = None
# TODO: support torch computation
import xformers.ops
if mask is not None:
attn_bias = xformers.ops.fmha.BlockDiagonalMask.from_seqlens([N] * B, mask)
x = xformers.ops.memory_efficient_attention(q, k, v, p=self.attn_drop.p, attn_bias=attn_bias)
x = x.view(B, -1, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class T2IFinalLayer(nn.Module):
"""
The final layer of PixArt.
"""
def __init__(self, hidden_size, num_patch, out_channels, d_t=None, d_s=None):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(hidden_size, num_patch * out_channels, bias=True)
self.scale_shift_table = nn.Parameter(torch.randn(2, hidden_size) / hidden_size**0.5)
self.out_channels = out_channels
self.d_t = d_t
self.d_s = d_s
def t_mask_select(self, x_mask, x, masked_x, T, S):
# x: [B, (T, S), C]
# mased_x: [B, (T, S), C]
# x_mask: [B, T]
x = rearrange(x, "B (T S) C -> B T S C", T=T, S=S)
masked_x = rearrange(masked_x, "B (T S) C -> B T S C", T=T, S=S)
x = torch.where(x_mask[:, :, None, None], x, masked_x)
x = rearrange(x, "B T S C -> B (T S) C")
return x
def forward(self, x, t, x_mask=None, t0=None, T=None, S=None):
if T is None:
T = self.d_t
if S is None:
S = self.d_s
shift, scale = (self.scale_shift_table[None] + t[:, None]).chunk(2, dim=1)
x = t2i_modulate(self.norm_final(x), shift, scale)
if x_mask is not None:
shift_zero, scale_zero = (self.scale_shift_table[None] + t0[:, None]).chunk(2, dim=1)
x_zero = t2i_modulate(self.norm_final(x), shift_zero, scale_zero)
x = self.t_mask_select(x_mask, x, x_zero, T, S)
x = self.linear(x)
return x
# ===============================================
# Embedding Layers for Timesteps and Class Labels
# ===============================================
class TimestepEmbedder(nn.Module):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
half = dim // 2
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half)
freqs = freqs.to(device=t.device)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def forward(self, t, dtype):
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
if t_freq.dtype != dtype:
t_freq = t_freq.to(dtype)
t_emb = self.mlp(t_freq)
return t_emb
class SizeEmbedder(TimestepEmbedder):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__(hidden_size=hidden_size, frequency_embedding_size=frequency_embedding_size)
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
self.outdim = hidden_size
def forward(self, s, bs):
if s.ndim == 1:
s = s[:, None]
assert s.ndim == 2
if s.shape[0] != bs:
s = s.repeat(bs // s.shape[0], 1)
assert s.shape[0] == bs
b, dims = s.shape[0], s.shape[1]
s = rearrange(s, "b d -> (b d)")
s_freq = self.timestep_embedding(s, self.frequency_embedding_size).to(self.dtype)
s_emb = self.mlp(s_freq)
s_emb = rearrange(s_emb, "(b d) d2 -> b (d d2)", b=b, d=dims, d2=self.outdim)
return s_emb
@property
def dtype(self):
return next(self.parameters()).dtype
class CaptionEmbedder(nn.Module):
"""
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
"""
def __init__(
self,
in_channels,
hidden_size,
uncond_prob,
act_layer=nn.GELU(approximate="tanh"),
token_num=120,
):
super().__init__()
self.y_proj = Mlp(
in_features=in_channels,
hidden_features=hidden_size,
out_features=hidden_size,
act_layer=act_layer,
drop=0,
)
self.register_buffer(
"y_embedding",
torch.randn(token_num, in_channels) / in_channels**0.5,
)
self.uncond_prob = uncond_prob
def token_drop(self, caption, force_drop_ids=None):
"""
Drops labels to enable classifier-free guidance.
"""
if force_drop_ids is None:
drop_ids = torch.rand(caption.shape[0]).cuda() < self.uncond_prob
else:
drop_ids = force_drop_ids == 1
caption = torch.where(drop_ids[:, None, None, None], self.y_embedding, caption)
return caption
def forward(self, caption, train, force_drop_ids=None):
if train:
assert caption.shape[2:] == self.y_embedding.shape
use_dropout = self.uncond_prob > 0
if (train and use_dropout) or (force_drop_ids is not None):
caption = self.token_drop(caption, force_drop_ids)
caption = self.y_proj(caption)
return caption
class PositionEmbedding2D(nn.Module):
def __init__(self, dim: int) -> None:
super().__init__()
self.dim = dim
assert dim % 4 == 0, "dim must be divisible by 4"
half_dim = dim // 2
inv_freq = 1.0 / (10000 ** (torch.arange(0, half_dim, 2).float() / half_dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
def _get_sin_cos_emb(self, t: torch.Tensor):
out = torch.einsum("i,d->id", t, self.inv_freq)
emb_cos = torch.cos(out)
emb_sin = torch.sin(out)
return torch.cat((emb_sin, emb_cos), dim=-1)
@functools.lru_cache(maxsize=512)
def _get_cached_emb(
self,
device: torch.device,
dtype: torch.dtype,
h: int,
w: int,
scale: float = 1.0,
base_size: Optional[int] = None,
):
grid_h = torch.arange(h, device=device) / scale
grid_w = torch.arange(w, device=device) / scale
if base_size is not None:
grid_h *= base_size / h
grid_w *= base_size / w
grid_h, grid_w = torch.meshgrid(
grid_w,
grid_h,
indexing="ij",
) # here w goes first
grid_h = grid_h.t().reshape(-1)
grid_w = grid_w.t().reshape(-1)
emb_h = self._get_sin_cos_emb(grid_h)
emb_w = self._get_sin_cos_emb(grid_w)
return torch.concat([emb_h, emb_w], dim=-1).unsqueeze(0).to(dtype)
def forward(
self,
x: torch.Tensor,
h: int,
w: int,
scale: Optional[float] = 1.0,
base_size: Optional[int] = None,
) -> torch.Tensor:
return self._get_cached_emb(x.device, x.dtype, h, w, scale, base_size)