Spaces:
Running
on
Zero
Running
on
Zero
import random | |
from typing import Iterator, Optional | |
import numpy as np | |
import torch | |
from torch.utils.data import DataLoader, Dataset, DistributedSampler | |
from torch.utils.data.distributed import DistributedSampler | |
from videosys.core.parallel_mgr import ParallelManager | |
class StatefulDistributedSampler(DistributedSampler): | |
def __init__( | |
self, | |
dataset: Dataset, | |
num_replicas: Optional[int] = None, | |
rank: Optional[int] = None, | |
shuffle: bool = True, | |
seed: int = 0, | |
drop_last: bool = False, | |
) -> None: | |
super().__init__(dataset, num_replicas, rank, shuffle, seed, drop_last) | |
self.start_index: int = 0 | |
def __iter__(self) -> Iterator: | |
iterator = super().__iter__() | |
indices = list(iterator) | |
indices = indices[self.start_index :] | |
return iter(indices) | |
def __len__(self) -> int: | |
return self.num_samples - self.start_index | |
def set_start_index(self, start_index: int) -> None: | |
self.start_index = start_index | |
def prepare_dataloader( | |
dataset, | |
batch_size, | |
shuffle=False, | |
seed=1024, | |
drop_last=False, | |
pin_memory=False, | |
num_workers=0, | |
pg_manager: Optional[ParallelManager] = None, | |
**kwargs, | |
): | |
r""" | |
Prepare a dataloader for distributed training. The dataloader will be wrapped by | |
`torch.utils.data.DataLoader` and `StatefulDistributedSampler`. | |
Args: | |
dataset (`torch.utils.data.Dataset`): The dataset to be loaded. | |
shuffle (bool, optional): Whether to shuffle the dataset. Defaults to False. | |
seed (int, optional): Random worker seed for sampling, defaults to 1024. | |
add_sampler: Whether to add ``DistributedDataParallelSampler`` to the dataset. Defaults to True. | |
drop_last (bool, optional): Set to True to drop the last incomplete batch, if the dataset size | |
is not divisible by the batch size. If False and the size of dataset is not divisible by | |
the batch size, then the last batch will be smaller, defaults to False. | |
pin_memory (bool, optional): Whether to pin memory address in CPU memory. Defaults to False. | |
num_workers (int, optional): Number of worker threads for this dataloader. Defaults to 0. | |
kwargs (dict): optional parameters for ``torch.utils.data.DataLoader``, more details could be found in | |
`DataLoader <https://pytorch.org/docs/stable/_modules/torch/utils/data/dataloader.html#DataLoader>`_. | |
Returns: | |
:class:`torch.utils.data.DataLoader`: A DataLoader used for training or testing. | |
""" | |
_kwargs = kwargs.copy() | |
sampler = StatefulDistributedSampler( | |
dataset, | |
num_replicas=pg_manager.size(pg_manager.dp_axis), | |
rank=pg_manager.coordinate(pg_manager.dp_axis), | |
shuffle=shuffle, | |
) | |
# Deterministic dataloader | |
def seed_worker(worker_id): | |
worker_seed = seed | |
np.random.seed(worker_seed) | |
torch.manual_seed(worker_seed) | |
random.seed(worker_seed) | |
return DataLoader( | |
dataset, | |
batch_size=batch_size, | |
sampler=sampler, | |
worker_init_fn=seed_worker, | |
drop_last=drop_last, | |
pin_memory=pin_memory, | |
num_workers=num_workers, | |
**_kwargs, | |
) | |