Spaces:
Running
on
Zero
Running
on
Zero
from dataclasses import dataclass | |
from typing import Iterable, List, Optional, Sequence, Tuple | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
from videosys.modules.layers import LlamaRMSNorm | |
class Attention(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
num_heads: int = 8, | |
qkv_bias: bool = False, | |
qk_norm: bool = False, | |
attn_drop: float = 0.0, | |
proj_drop: float = 0.0, | |
norm_layer: nn.Module = LlamaRMSNorm, | |
enable_flashattn: bool = False, | |
rope=None, | |
) -> None: | |
super().__init__() | |
assert dim % num_heads == 0, "dim should be divisible by num_heads" | |
self.dim = dim | |
self.num_heads = num_heads | |
self.head_dim = dim // num_heads | |
self.scale = self.head_dim**-0.5 | |
self.enable_flashattn = enable_flashattn | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() | |
self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
self.rope = False | |
if rope is not None: | |
self.rope = True | |
self.rotary_emb = rope | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
B, N, C = x.shape | |
qkv = self.qkv(x) | |
qkv = qkv.view(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 1, 3, 4) | |
q, k, v = qkv.unbind(0) | |
if self.rope: | |
q = self.rotary_emb(q) | |
k = self.rotary_emb(k) | |
q, k = self.q_norm(q), self.k_norm(k) | |
if self.enable_flashattn: | |
from flash_attn import flash_attn_func | |
x = flash_attn_func( | |
q, | |
k, | |
v, | |
dropout_p=self.attn_drop.p if self.training else 0.0, | |
softmax_scale=self.scale, | |
) | |
else: | |
q, k, v = map(lambda t: t.permute(0, 2, 1, 3), (q, k, v)) | |
x = F.scaled_dot_product_attention( | |
q, k, v, scale=self.scale, dropout_p=self.attn_drop.p if self.training else 0.0 | |
) | |
x_output_shape = (B, N, C) | |
if not self.enable_flashattn: | |
x = x.transpose(1, 2) | |
x = x.reshape(x_output_shape) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class MultiHeadCrossAttention(nn.Module): | |
def __init__(self, d_model, num_heads, attn_drop=0.0, proj_drop=0.0, enable_flashattn=False): | |
super(MultiHeadCrossAttention, self).__init__() | |
assert d_model % num_heads == 0, "d_model must be divisible by num_heads" | |
self.d_model = d_model | |
self.num_heads = num_heads | |
self.head_dim = d_model // num_heads | |
self.enable_flashattn = enable_flashattn | |
self.q_linear = nn.Linear(d_model, d_model) | |
self.kv_linear = nn.Linear(d_model, d_model * 2) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(d_model, d_model) | |
self.proj_drop = nn.Dropout(proj_drop) | |
self.last_out = None | |
self.count = 0 | |
def forward(self, x, cond, mask=None, timestep=None): | |
# query/value: img tokens; key: condition; mask: if padding tokens | |
B, N, C = x.shape | |
q = self.q_linear(x).view(1, -1, self.num_heads, self.head_dim) | |
kv = self.kv_linear(cond).view(1, -1, 2, self.num_heads, self.head_dim) | |
k, v = kv.unbind(2) | |
x = self.flash_attn_impl(q, k, v, mask, B, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
def flash_attn_impl(self, q, k, v, mask, B, N, C): | |
from flash_attn import flash_attn_varlen_func | |
q_seqinfo = _SeqLenInfo.from_seqlens([N] * B) | |
k_seqinfo = _SeqLenInfo.from_seqlens(mask) | |
x = flash_attn_varlen_func( | |
q.view(-1, self.num_heads, self.head_dim), | |
k.view(-1, self.num_heads, self.head_dim), | |
v.view(-1, self.num_heads, self.head_dim), | |
cu_seqlens_q=q_seqinfo.seqstart.cuda(), | |
cu_seqlens_k=k_seqinfo.seqstart.cuda(), | |
max_seqlen_q=q_seqinfo.max_seqlen, | |
max_seqlen_k=k_seqinfo.max_seqlen, | |
dropout_p=self.attn_drop.p if self.training else 0.0, | |
) | |
x = x.view(B, N, C) | |
return x | |
def torch_impl(self, q, k, v, mask, B, N, C): | |
q = q.view(B, -1, self.num_heads, self.head_dim).transpose(1, 2) | |
k = k.view(B, -1, self.num_heads, self.head_dim).transpose(1, 2) | |
v = v.view(B, -1, self.num_heads, self.head_dim).transpose(1, 2) | |
attn_mask = torch.zeros(B, N, k.shape[2], dtype=torch.float32, device=q.device) | |
for i, m in enumerate(mask): | |
attn_mask[i, :, m:] = -1e8 | |
scale = 1 / q.shape[-1] ** 0.5 | |
q = q * scale | |
attn = q @ k.transpose(-2, -1) | |
attn = attn.to(torch.float32) | |
if mask is not None: | |
attn = attn + attn_mask.unsqueeze(1) | |
attn = attn.softmax(-1) | |
attn = attn.to(v.dtype) | |
out = attn @ v | |
x = out.transpose(1, 2).contiguous().view(B, N, C) | |
return x | |
class _SeqLenInfo: | |
""" | |
copied from xformers | |
(Internal) Represents the division of a dimension into blocks. | |
For example, to represents a dimension of length 7 divided into | |
three blocks of lengths 2, 3 and 2, use `from_seqlength([2, 3, 2])`. | |
The members will be: | |
max_seqlen: 3 | |
min_seqlen: 2 | |
seqstart_py: [0, 2, 5, 7] | |
seqstart: torch.IntTensor([0, 2, 5, 7]) | |
""" | |
seqstart: torch.Tensor | |
max_seqlen: int | |
min_seqlen: int | |
seqstart_py: List[int] | |
def to(self, device: torch.device) -> None: | |
self.seqstart = self.seqstart.to(device, non_blocking=True) | |
def intervals(self) -> Iterable[Tuple[int, int]]: | |
yield from zip(self.seqstart_py, self.seqstart_py[1:]) | |
def from_seqlens(cls, seqlens: Iterable[int]) -> "_SeqLenInfo": | |
""" | |
Input tensors are assumed to be in shape [B, M, *] | |
""" | |
assert not isinstance(seqlens, torch.Tensor) | |
seqstart_py = [0] | |
max_seqlen = -1 | |
min_seqlen = -1 | |
for seqlen in seqlens: | |
min_seqlen = min(min_seqlen, seqlen) if min_seqlen != -1 else seqlen | |
max_seqlen = max(max_seqlen, seqlen) | |
seqstart_py.append(seqstart_py[len(seqstart_py) - 1] + seqlen) | |
seqstart = torch.tensor(seqstart_py, dtype=torch.int32) | |
return cls( | |
max_seqlen=max_seqlen, | |
min_seqlen=min_seqlen, | |
seqstart=seqstart, | |
seqstart_py=seqstart_py, | |
) | |
def split(self, x: torch.Tensor, batch_sizes: Optional[Sequence[int]] = None) -> List[torch.Tensor]: | |
if self.seqstart_py[-1] != x.shape[1] or x.shape[0] != 1: | |
raise ValueError( | |
f"Invalid `torch.Tensor` of shape {x.shape}, expected format " | |
f"(B, M, *) with B=1 and M={self.seqstart_py[-1]}\n" | |
f" seqstart: {self.seqstart_py}" | |
) | |
if batch_sizes is None: | |
batch_sizes = [1] * (len(self.seqstart_py) - 1) | |
split_chunks = [] | |
it = 0 | |
for batch_size in batch_sizes: | |
split_chunks.append(self.seqstart_py[it + batch_size] - self.seqstart_py[it]) | |
it += batch_size | |
return [ | |
tensor.reshape([bs, -1, *tensor.shape[2:]]) for bs, tensor in zip(batch_sizes, x.split(split_chunks, dim=1)) | |
] | |