Spaces:
Running
on
Zero
Running
on
Zero
# Modified from OpenAI's diffusion repos | |
# GLIDE: https://github.com/openai/glide-text2im/blob/main/glide_text2im/gaussian_diffusion.py | |
# ADM: https://github.com/openai/guided-diffusion/blob/main/guided_diffusion | |
# IDDPM: https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py | |
import numpy as np | |
import torch as th | |
def normal_kl(mean1, logvar1, mean2, logvar2): | |
""" | |
Compute the KL divergence between two gaussians. | |
Shapes are automatically broadcasted, so batches can be compared to | |
scalars, among other use cases. | |
""" | |
tensor = None | |
for obj in (mean1, logvar1, mean2, logvar2): | |
if isinstance(obj, th.Tensor): | |
tensor = obj | |
break | |
assert tensor is not None, "at least one argument must be a Tensor" | |
# Force variances to be Tensors. Broadcasting helps convert scalars to | |
# Tensors, but it does not work for th.exp(). | |
logvar1, logvar2 = [x if isinstance(x, th.Tensor) else th.tensor(x).to(tensor) for x in (logvar1, logvar2)] | |
return 0.5 * (-1.0 + logvar2 - logvar1 + th.exp(logvar1 - logvar2) + ((mean1 - mean2) ** 2) * th.exp(-logvar2)) | |
def approx_standard_normal_cdf(x): | |
""" | |
A fast approximation of the cumulative distribution function of the | |
standard normal. | |
""" | |
return 0.5 * (1.0 + th.tanh(np.sqrt(2.0 / np.pi) * (x + 0.044715 * th.pow(x, 3)))) | |
def continuous_gaussian_log_likelihood(x, *, means, log_scales): | |
""" | |
Compute the log-likelihood of a continuous Gaussian distribution. | |
:param x: the targets | |
:param means: the Gaussian mean Tensor. | |
:param log_scales: the Gaussian log stddev Tensor. | |
:return: a tensor like x of log probabilities (in nats). | |
""" | |
centered_x = x - means | |
inv_stdv = th.exp(-log_scales) | |
normalized_x = centered_x * inv_stdv | |
log_probs = th.distributions.Normal(th.zeros_like(x), th.ones_like(x)).log_prob(normalized_x) | |
return log_probs | |
def discretized_gaussian_log_likelihood(x, *, means, log_scales): | |
""" | |
Compute the log-likelihood of a Gaussian distribution discretizing to a | |
given image. | |
:param x: the target images. It is assumed that this was uint8 values, | |
rescaled to the range [-1, 1]. | |
:param means: the Gaussian mean Tensor. | |
:param log_scales: the Gaussian log stddev Tensor. | |
:return: a tensor like x of log probabilities (in nats). | |
""" | |
assert x.shape == means.shape == log_scales.shape | |
centered_x = x - means | |
inv_stdv = th.exp(-log_scales) | |
plus_in = inv_stdv * (centered_x + 1.0 / 255.0) | |
cdf_plus = approx_standard_normal_cdf(plus_in) | |
min_in = inv_stdv * (centered_x - 1.0 / 255.0) | |
cdf_min = approx_standard_normal_cdf(min_in) | |
log_cdf_plus = th.log(cdf_plus.clamp(min=1e-12)) | |
log_one_minus_cdf_min = th.log((1.0 - cdf_min).clamp(min=1e-12)) | |
cdf_delta = cdf_plus - cdf_min | |
log_probs = th.where( | |
x < -0.999, | |
log_cdf_plus, | |
th.where(x > 0.999, log_one_minus_cdf_min, th.log(cdf_delta.clamp(min=1e-12))), | |
) | |
assert log_probs.shape == x.shape | |
return log_probs | |