Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,636 Bytes
07c6a04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
from dataclasses import dataclass
from typing import Iterable, List, Optional, Sequence, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint
from videosys.modules.layers import LlamaRMSNorm
class Attention(nn.Module):
def __init__(
self,
dim: int,
num_heads: int = 8,
qkv_bias: bool = False,
qk_norm: bool = False,
attn_drop: float = 0.0,
proj_drop: float = 0.0,
norm_layer: nn.Module = LlamaRMSNorm,
enable_flashattn: bool = False,
rope=None,
) -> None:
super().__init__()
assert dim % num_heads == 0, "dim should be divisible by num_heads"
self.dim = dim
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.scale = self.head_dim**-0.5
self.enable_flashattn = enable_flashattn
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.rope = False
if rope is not None:
self.rope = True
self.rotary_emb = rope
def forward(self, x: torch.Tensor) -> torch.Tensor:
B, N, C = x.shape
qkv = self.qkv(x)
qkv = qkv.view(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 1, 3, 4)
q, k, v = qkv.unbind(0)
if self.rope:
q = self.rotary_emb(q)
k = self.rotary_emb(k)
q, k = self.q_norm(q), self.k_norm(k)
if self.enable_flashattn:
from flash_attn import flash_attn_func
x = flash_attn_func(
q,
k,
v,
dropout_p=self.attn_drop.p if self.training else 0.0,
softmax_scale=self.scale,
)
else:
q, k, v = map(lambda t: t.permute(0, 2, 1, 3), (q, k, v))
x = F.scaled_dot_product_attention(
q, k, v, scale=self.scale, dropout_p=self.attn_drop.p if self.training else 0.0
)
x_output_shape = (B, N, C)
if not self.enable_flashattn:
x = x.transpose(1, 2)
x = x.reshape(x_output_shape)
x = self.proj(x)
x = self.proj_drop(x)
return x
class MultiHeadCrossAttention(nn.Module):
def __init__(self, d_model, num_heads, attn_drop=0.0, proj_drop=0.0, enable_flashattn=False):
super(MultiHeadCrossAttention, self).__init__()
assert d_model % num_heads == 0, "d_model must be divisible by num_heads"
self.d_model = d_model
self.num_heads = num_heads
self.head_dim = d_model // num_heads
self.enable_flashattn = enable_flashattn
self.q_linear = nn.Linear(d_model, d_model)
self.kv_linear = nn.Linear(d_model, d_model * 2)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(d_model, d_model)
self.proj_drop = nn.Dropout(proj_drop)
self.last_out = None
self.count = 0
def forward(self, x, cond, mask=None, timestep=None):
# query/value: img tokens; key: condition; mask: if padding tokens
B, N, C = x.shape
q = self.q_linear(x).view(1, -1, self.num_heads, self.head_dim)
kv = self.kv_linear(cond).view(1, -1, 2, self.num_heads, self.head_dim)
k, v = kv.unbind(2)
x = self.flash_attn_impl(q, k, v, mask, B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
def flash_attn_impl(self, q, k, v, mask, B, N, C):
from flash_attn import flash_attn_varlen_func
q_seqinfo = _SeqLenInfo.from_seqlens([N] * B)
k_seqinfo = _SeqLenInfo.from_seqlens(mask)
x = flash_attn_varlen_func(
q.view(-1, self.num_heads, self.head_dim),
k.view(-1, self.num_heads, self.head_dim),
v.view(-1, self.num_heads, self.head_dim),
cu_seqlens_q=q_seqinfo.seqstart.cuda(),
cu_seqlens_k=k_seqinfo.seqstart.cuda(),
max_seqlen_q=q_seqinfo.max_seqlen,
max_seqlen_k=k_seqinfo.max_seqlen,
dropout_p=self.attn_drop.p if self.training else 0.0,
)
x = x.view(B, N, C)
return x
def torch_impl(self, q, k, v, mask, B, N, C):
q = q.view(B, -1, self.num_heads, self.head_dim).transpose(1, 2)
k = k.view(B, -1, self.num_heads, self.head_dim).transpose(1, 2)
v = v.view(B, -1, self.num_heads, self.head_dim).transpose(1, 2)
attn_mask = torch.zeros(B, N, k.shape[2], dtype=torch.float32, device=q.device)
for i, m in enumerate(mask):
attn_mask[i, :, m:] = -1e8
scale = 1 / q.shape[-1] ** 0.5
q = q * scale
attn = q @ k.transpose(-2, -1)
attn = attn.to(torch.float32)
if mask is not None:
attn = attn + attn_mask.unsqueeze(1)
attn = attn.softmax(-1)
attn = attn.to(v.dtype)
out = attn @ v
x = out.transpose(1, 2).contiguous().view(B, N, C)
return x
@dataclass
class _SeqLenInfo:
"""
copied from xformers
(Internal) Represents the division of a dimension into blocks.
For example, to represents a dimension of length 7 divided into
three blocks of lengths 2, 3 and 2, use `from_seqlength([2, 3, 2])`.
The members will be:
max_seqlen: 3
min_seqlen: 2
seqstart_py: [0, 2, 5, 7]
seqstart: torch.IntTensor([0, 2, 5, 7])
"""
seqstart: torch.Tensor
max_seqlen: int
min_seqlen: int
seqstart_py: List[int]
def to(self, device: torch.device) -> None:
self.seqstart = self.seqstart.to(device, non_blocking=True)
def intervals(self) -> Iterable[Tuple[int, int]]:
yield from zip(self.seqstart_py, self.seqstart_py[1:])
@classmethod
def from_seqlens(cls, seqlens: Iterable[int]) -> "_SeqLenInfo":
"""
Input tensors are assumed to be in shape [B, M, *]
"""
assert not isinstance(seqlens, torch.Tensor)
seqstart_py = [0]
max_seqlen = -1
min_seqlen = -1
for seqlen in seqlens:
min_seqlen = min(min_seqlen, seqlen) if min_seqlen != -1 else seqlen
max_seqlen = max(max_seqlen, seqlen)
seqstart_py.append(seqstart_py[len(seqstart_py) - 1] + seqlen)
seqstart = torch.tensor(seqstart_py, dtype=torch.int32)
return cls(
max_seqlen=max_seqlen,
min_seqlen=min_seqlen,
seqstart=seqstart,
seqstart_py=seqstart_py,
)
def split(self, x: torch.Tensor, batch_sizes: Optional[Sequence[int]] = None) -> List[torch.Tensor]:
if self.seqstart_py[-1] != x.shape[1] or x.shape[0] != 1:
raise ValueError(
f"Invalid `torch.Tensor` of shape {x.shape}, expected format "
f"(B, M, *) with B=1 and M={self.seqstart_py[-1]}\n"
f" seqstart: {self.seqstart_py}"
)
if batch_sizes is None:
batch_sizes = [1] * (len(self.seqstart_py) - 1)
split_chunks = []
it = 0
for batch_size in batch_sizes:
split_chunks.append(self.seqstart_py[it + batch_size] - self.seqstart_py[it])
it += batch_size
return [
tensor.reshape([bs, -1, *tensor.shape[2:]]) for bs, tensor in zip(batch_sizes, x.split(split_chunks, dim=1))
]
|