File size: 7,636 Bytes
07c6a04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
from dataclasses import dataclass
from typing import Iterable, List, Optional, Sequence, Tuple

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint

from videosys.modules.layers import LlamaRMSNorm


class Attention(nn.Module):
    def __init__(
        self,
        dim: int,
        num_heads: int = 8,
        qkv_bias: bool = False,
        qk_norm: bool = False,
        attn_drop: float = 0.0,
        proj_drop: float = 0.0,
        norm_layer: nn.Module = LlamaRMSNorm,
        enable_flashattn: bool = False,
        rope=None,
    ) -> None:
        super().__init__()
        assert dim % num_heads == 0, "dim should be divisible by num_heads"
        self.dim = dim
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.scale = self.head_dim**-0.5
        self.enable_flashattn = enable_flashattn

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
        self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        self.rope = False
        if rope is not None:
            self.rope = True
            self.rotary_emb = rope

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        B, N, C = x.shape

        qkv = self.qkv(x)
        qkv = qkv.view(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 1, 3, 4)
        q, k, v = qkv.unbind(0)
        if self.rope:
            q = self.rotary_emb(q)
            k = self.rotary_emb(k)
        q, k = self.q_norm(q), self.k_norm(k)

        if self.enable_flashattn:
            from flash_attn import flash_attn_func

            x = flash_attn_func(
                q,
                k,
                v,
                dropout_p=self.attn_drop.p if self.training else 0.0,
                softmax_scale=self.scale,
            )
        else:
            q, k, v = map(lambda t: t.permute(0, 2, 1, 3), (q, k, v))
            x = F.scaled_dot_product_attention(
                q, k, v, scale=self.scale, dropout_p=self.attn_drop.p if self.training else 0.0
            )

        x_output_shape = (B, N, C)
        if not self.enable_flashattn:
            x = x.transpose(1, 2)
        x = x.reshape(x_output_shape)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class MultiHeadCrossAttention(nn.Module):
    def __init__(self, d_model, num_heads, attn_drop=0.0, proj_drop=0.0, enable_flashattn=False):
        super(MultiHeadCrossAttention, self).__init__()
        assert d_model % num_heads == 0, "d_model must be divisible by num_heads"

        self.d_model = d_model
        self.num_heads = num_heads
        self.head_dim = d_model // num_heads
        self.enable_flashattn = enable_flashattn

        self.q_linear = nn.Linear(d_model, d_model)
        self.kv_linear = nn.Linear(d_model, d_model * 2)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(d_model, d_model)
        self.proj_drop = nn.Dropout(proj_drop)
        self.last_out = None
        self.count = 0

    def forward(self, x, cond, mask=None, timestep=None):
        # query/value: img tokens; key: condition; mask: if padding tokens
        B, N, C = x.shape

        q = self.q_linear(x).view(1, -1, self.num_heads, self.head_dim)
        kv = self.kv_linear(cond).view(1, -1, 2, self.num_heads, self.head_dim)
        k, v = kv.unbind(2)
        x = self.flash_attn_impl(q, k, v, mask, B, N, C)

        x = self.proj(x)
        x = self.proj_drop(x)
        return x

    def flash_attn_impl(self, q, k, v, mask, B, N, C):
        from flash_attn import flash_attn_varlen_func

        q_seqinfo = _SeqLenInfo.from_seqlens([N] * B)
        k_seqinfo = _SeqLenInfo.from_seqlens(mask)

        x = flash_attn_varlen_func(
            q.view(-1, self.num_heads, self.head_dim),
            k.view(-1, self.num_heads, self.head_dim),
            v.view(-1, self.num_heads, self.head_dim),
            cu_seqlens_q=q_seqinfo.seqstart.cuda(),
            cu_seqlens_k=k_seqinfo.seqstart.cuda(),
            max_seqlen_q=q_seqinfo.max_seqlen,
            max_seqlen_k=k_seqinfo.max_seqlen,
            dropout_p=self.attn_drop.p if self.training else 0.0,
        )
        x = x.view(B, N, C)
        return x

    def torch_impl(self, q, k, v, mask, B, N, C):
        q = q.view(B, -1, self.num_heads, self.head_dim).transpose(1, 2)
        k = k.view(B, -1, self.num_heads, self.head_dim).transpose(1, 2)
        v = v.view(B, -1, self.num_heads, self.head_dim).transpose(1, 2)

        attn_mask = torch.zeros(B, N, k.shape[2], dtype=torch.float32, device=q.device)
        for i, m in enumerate(mask):
            attn_mask[i, :, m:] = -1e8

        scale = 1 / q.shape[-1] ** 0.5
        q = q * scale
        attn = q @ k.transpose(-2, -1)
        attn = attn.to(torch.float32)
        if mask is not None:
            attn = attn + attn_mask.unsqueeze(1)
        attn = attn.softmax(-1)
        attn = attn.to(v.dtype)
        out = attn @ v

        x = out.transpose(1, 2).contiguous().view(B, N, C)
        return x


@dataclass
class _SeqLenInfo:
    """
    copied from xformers

    (Internal) Represents the division of a dimension into blocks.
    For example, to represents a dimension of length 7 divided into
    three blocks of lengths 2, 3 and 2, use `from_seqlength([2, 3, 2])`.
    The members will be:
        max_seqlen: 3
        min_seqlen: 2
        seqstart_py: [0, 2, 5, 7]
        seqstart: torch.IntTensor([0, 2, 5, 7])
    """

    seqstart: torch.Tensor
    max_seqlen: int
    min_seqlen: int
    seqstart_py: List[int]

    def to(self, device: torch.device) -> None:
        self.seqstart = self.seqstart.to(device, non_blocking=True)

    def intervals(self) -> Iterable[Tuple[int, int]]:
        yield from zip(self.seqstart_py, self.seqstart_py[1:])

    @classmethod
    def from_seqlens(cls, seqlens: Iterable[int]) -> "_SeqLenInfo":
        """
        Input tensors are assumed to be in shape [B, M, *]
        """
        assert not isinstance(seqlens, torch.Tensor)
        seqstart_py = [0]
        max_seqlen = -1
        min_seqlen = -1
        for seqlen in seqlens:
            min_seqlen = min(min_seqlen, seqlen) if min_seqlen != -1 else seqlen
            max_seqlen = max(max_seqlen, seqlen)
            seqstart_py.append(seqstart_py[len(seqstart_py) - 1] + seqlen)
        seqstart = torch.tensor(seqstart_py, dtype=torch.int32)
        return cls(
            max_seqlen=max_seqlen,
            min_seqlen=min_seqlen,
            seqstart=seqstart,
            seqstart_py=seqstart_py,
        )

    def split(self, x: torch.Tensor, batch_sizes: Optional[Sequence[int]] = None) -> List[torch.Tensor]:
        if self.seqstart_py[-1] != x.shape[1] or x.shape[0] != 1:
            raise ValueError(
                f"Invalid `torch.Tensor` of shape {x.shape}, expected format "
                f"(B, M, *) with B=1 and M={self.seqstart_py[-1]}\n"
                f" seqstart: {self.seqstart_py}"
            )
        if batch_sizes is None:
            batch_sizes = [1] * (len(self.seqstart_py) - 1)
        split_chunks = []
        it = 0
        for batch_size in batch_sizes:
            split_chunks.append(self.seqstart_py[it + batch_size] - self.seqstart_py[it])
            it += batch_size
        return [
            tensor.reshape([bs, -1, *tensor.shape[2:]]) for bs, tensor in zip(batch_sizes, x.split(split_chunks, dim=1))
        ]