Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,108 Bytes
07c6a04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 |
import re
from typing import Optional, Tuple, Union
import torch
from diffusers.models import AutoencoderKL
from videosys.core.pab_mgr import PABConfig, set_pab_manager
from videosys.core.pipeline import VideoSysPipeline, VideoSysPipelineOutput
from videosys.utils.utils import save_video
from .datasets import get_image_size, get_num_frames
from .inference_utils import (
append_generated,
append_score_to_prompts,
apply_mask_strategy,
collect_references_batch,
dframe_to_frame,
extract_json_from_prompts,
extract_prompts_loop,
merge_prompt,
prepare_multi_resolution_info,
split_prompt,
)
from .rflow import RFLOW
from .stdit3 import STDiT3_XL_2
from .text_encoder import T5Encoder, text_preprocessing
from .vae import OpenSoraVAE_V1_2
class OpenSoraPABConfig(PABConfig):
def __init__(
self,
steps: int = 50,
spatial_broadcast: bool = True,
spatial_threshold: list = [450, 930],
spatial_gap: int = 2,
temporal_broadcast: bool = True,
temporal_threshold: list = [450, 930],
temporal_gap: int = 4,
cross_broadcast: bool = True,
cross_threshold: list = [450, 930],
cross_gap: int = 6,
diffusion_skip: bool = False,
diffusion_timestep_respacing: list = None,
diffusion_skip_timestep: list = None,
mlp_skip: bool = True,
mlp_spatial_skip_config: dict = {
676: {"block": [0, 1, 2, 3, 4], "skip_count": 2},
788: {"block": [0, 1, 2, 3, 4], "skip_count": 2},
864: {"block": [0, 1, 2, 3, 4], "skip_count": 2},
},
mlp_temporal_skip_config: dict = {
676: {"block": [0, 1, 2, 3, 4], "skip_count": 2},
788: {"block": [0, 1, 2, 3, 4], "skip_count": 2},
864: {"block": [0, 1, 2, 3, 4], "skip_count": 2},
},
):
super().__init__(
steps=steps,
spatial_broadcast=spatial_broadcast,
spatial_threshold=spatial_threshold,
spatial_gap=spatial_gap,
temporal_broadcast=temporal_broadcast,
temporal_threshold=temporal_threshold,
temporal_gap=temporal_gap,
cross_broadcast=cross_broadcast,
cross_threshold=cross_threshold,
cross_gap=cross_gap,
diffusion_skip=diffusion_skip,
diffusion_timestep_respacing=diffusion_timestep_respacing,
diffusion_skip_timestep=diffusion_skip_timestep,
mlp_skip=mlp_skip,
mlp_spatial_skip_config=mlp_spatial_skip_config,
mlp_temporal_skip_config=mlp_temporal_skip_config,
)
class OpenSoraConfig:
def __init__(
self,
world_size: int = 1,
transformer: str = "hpcai-tech/OpenSora-STDiT-v3",
vae: str = "hpcai-tech/OpenSora-VAE-v1.2",
text_encoder: str = "DeepFloyd/t5-v1_1-xxl",
# ======= scheduler =======
num_sampling_steps: int = 30,
cfg_scale: float = 7.0,
# ======= vae ========
tiling_size: int = 4,
# ======= pab ========
enable_pab: bool = False,
pab_config: PABConfig = OpenSoraPABConfig(),
):
# ======= engine ========
self.world_size = world_size
# ======= pipeline ========
self.pipeline_cls = OpenSoraPipeline
self.transformer = transformer
self.vae = vae
self.text_encoder = text_encoder
# ======= scheduler ========
self.num_sampling_steps = num_sampling_steps
self.cfg_scale = cfg_scale
# ======= vae ========
self.tiling_size = tiling_size
# ======= pab ========
self.enable_pab = enable_pab
self.pab_config = pab_config
class OpenSoraPipeline(VideoSysPipeline):
r"""
Pipeline for text-to-image generation using PixArt-Alpha.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`T5EncoderModel`]):
Frozen text-encoder. PixArt-Alpha uses
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
[t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant.
tokenizer (`T5Tokenizer`):
Tokenizer of class
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
transformer ([`Transformer2DModel`]):
A text conditioned `Transformer2DModel` to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
"""
bad_punct_regex = re.compile(
r"[" + "#®•©™&@·º½¾¿¡§~" + "\)" + "\(" + "\]" + "\[" + "\}" + "\{" + "\|" + "\\" + "\/" + "\*" + r"]{1,}"
) # noqa
_optional_components = ["tokenizer", "text_encoder"]
model_cpu_offload_seq = "text_encoder->transformer->vae"
def __init__(
self,
config: OpenSoraConfig,
text_encoder: Optional[T5Encoder] = None,
vae: Optional[AutoencoderKL] = None,
transformer: Optional[STDiT3_XL_2] = None,
scheduler: Optional[RFLOW] = None,
device: torch.device = torch.device("cuda"),
dtype: torch.dtype = torch.bfloat16,
):
super().__init__()
self._config = config
self._device = device
self._dtype = dtype
# initialize the model if not provided
if text_encoder is None:
text_encoder = T5Encoder(
from_pretrained=config.text_encoder, model_max_length=300, device=device, dtype=dtype
)
if vae is None:
vae = OpenSoraVAE_V1_2(
from_pretrained="hpcai-tech/OpenSora-VAE-v1.2",
micro_frame_size=17,
micro_batch_size=config.tiling_size,
).to(dtype)
if transformer is None:
transformer = STDiT3_XL_2(
from_pretrained="hpcai-tech/OpenSora-STDiT-v3",
qk_norm=True,
enable_flash_attn=True,
enable_layernorm_kernel=True,
in_channels=vae.out_channels,
caption_channels=text_encoder.output_dim,
model_max_length=text_encoder.model_max_length,
).to(device, dtype)
text_encoder.y_embedder = transformer.y_embedder
if scheduler is None:
scheduler = RFLOW(
use_timestep_transform=True, num_sampling_steps=config.num_sampling_steps, cfg_scale=config.cfg_scale
)
# pab
if config.enable_pab:
set_pab_manager(config.pab_config)
# set eval and device
self.set_eval_and_device(device, text_encoder, vae, transformer)
self.register_modules(text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler)
@torch.no_grad()
def generate(
self,
prompt: str,
resolution="480p",
aspect_ratio="9:16",
num_frames: int = 51,
loop: int = 1,
llm_refine: bool = False,
negative_prompt: str = "",
ms: Optional[str] = "",
refs: Optional[str] = "",
aes: float = 6.5,
flow: Optional[float] = None,
camera_motion: Optional[float] = None,
condition_frame_length: int = 5,
align: int = 5,
condition_frame_edit: float = 0.0,
return_dict: bool = True,
verbose: bool = True,
) -> Union[VideoSysPipelineOutput, Tuple]:
"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
resolution (`str`, *optional*, defaults to `"480p"`):
The resolution of the generated video.
aspect_ratio (`str`, *optional*, defaults to `"9:16"`):
The aspect ratio of the generated video.
num_frames (`int`, *optional*, defaults to 51):
The number of frames to generate.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
num_inference_steps (`int`, *optional*, defaults to 100):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
timesteps (`List[int]`, *optional*):
Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`
timesteps are used. Must be in descending order.
guidance_scale (`float`, *optional*, defaults to 7.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
height (`int`, *optional*, defaults to self.unet.config.sample_size):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to self.unet.config.sample_size):
The width in pixels of the generated image.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. For PixArt-Alpha this negative prompt should be "". If not
provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
clean_caption (`bool`, *optional*, defaults to `True`):
Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to
be installed. If the dependencies are not installed, the embeddings will be created from the raw
prompt.
mask_feature (`bool` defaults to `True`): If set to `True`, the text embeddings will be masked.
Examples:
Returns:
[`~pipelines.ImagePipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
returned where the first element is a list with the generated images
"""
# == basic ==
fps = 24
image_size = get_image_size(resolution, aspect_ratio)
num_frames = get_num_frames(num_frames)
# == prepare batch prompts ==
batch_prompts = [prompt]
ms = [ms]
refs = [refs]
# == get json from prompts ==
batch_prompts, refs, ms = extract_json_from_prompts(batch_prompts, refs, ms)
# == get reference for condition ==
refs = collect_references_batch(refs, self.vae, image_size)
# == multi-resolution info ==
model_args = prepare_multi_resolution_info(
"OpenSora", len(batch_prompts), image_size, num_frames, fps, self._device, self._dtype
)
# == process prompts step by step ==
# 0. split prompt
# each element in the list is [prompt_segment_list, loop_idx_list]
batched_prompt_segment_list = []
batched_loop_idx_list = []
for prompt in batch_prompts:
prompt_segment_list, loop_idx_list = split_prompt(prompt)
batched_prompt_segment_list.append(prompt_segment_list)
batched_loop_idx_list.append(loop_idx_list)
# 1. refine prompt by openai
# if llm_refine:
# only call openai API when
# 1. seq parallel is not enabled
# 2. seq parallel is enabled and the process is rank 0
# if not enable_sequence_parallelism or (enable_sequence_parallelism and coordinator.is_master()):
# for idx, prompt_segment_list in enumerate(batched_prompt_segment_list):
# batched_prompt_segment_list[idx] = refine_prompts_by_openai(prompt_segment_list)
# # sync the prompt if using seq parallel
# if enable_sequence_parallelism:
# coordinator.block_all()
# prompt_segment_length = [
# len(prompt_segment_list) for prompt_segment_list in batched_prompt_segment_list
# ]
# # flatten the prompt segment list
# batched_prompt_segment_list = [
# prompt_segment
# for prompt_segment_list in batched_prompt_segment_list
# for prompt_segment in prompt_segment_list
# ]
# # create a list of size equal to world size
# broadcast_obj_list = [batched_prompt_segment_list] * coordinator.world_size
# dist.broadcast_object_list(broadcast_obj_list, 0)
# # recover the prompt list
# batched_prompt_segment_list = []
# segment_start_idx = 0
# all_prompts = broadcast_obj_list[0]
# for num_segment in prompt_segment_length:
# batched_prompt_segment_list.append(
# all_prompts[segment_start_idx : segment_start_idx + num_segment]
# )
# segment_start_idx += num_segment
# 2. append score
for idx, prompt_segment_list in enumerate(batched_prompt_segment_list):
batched_prompt_segment_list[idx] = append_score_to_prompts(
prompt_segment_list,
aes=aes,
flow=flow,
camera_motion=camera_motion,
)
# 3. clean prompt with T5
for idx, prompt_segment_list in enumerate(batched_prompt_segment_list):
batched_prompt_segment_list[idx] = [text_preprocessing(prompt) for prompt in prompt_segment_list]
# 4. merge to obtain the final prompt
batch_prompts = []
for prompt_segment_list, loop_idx_list in zip(batched_prompt_segment_list, batched_loop_idx_list):
batch_prompts.append(merge_prompt(prompt_segment_list, loop_idx_list))
# == Iter over loop generation ==
video_clips = []
for loop_i in range(loop):
# == get prompt for loop i ==
batch_prompts_loop = extract_prompts_loop(batch_prompts, loop_i)
# == add condition frames for loop ==
if loop_i > 0:
refs, ms = append_generated(
self.vae, video_clips[-1], refs, ms, loop_i, condition_frame_length, condition_frame_edit
)
# == sampling ==
input_size = (num_frames, *image_size)
latent_size = self.vae.get_latent_size(input_size)
z = torch.randn(
len(batch_prompts), self.vae.out_channels, *latent_size, device=self._device, dtype=self._dtype
)
masks = apply_mask_strategy(z, refs, ms, loop_i, align=align)
samples = self.scheduler.sample(
self.transformer,
self.text_encoder,
z=z,
prompts=batch_prompts_loop,
device=self._device,
additional_args=model_args,
progress=verbose,
mask=masks,
)
samples = self.vae.decode(samples.to(self._dtype), num_frames=num_frames)
video_clips.append(samples)
for i in range(1, loop):
video_clips[i] = video_clips[i][:, dframe_to_frame(condition_frame_length) :]
video = torch.cat(video_clips, dim=1)
low, high = -1, 1
video.clamp_(min=low, max=high)
video.sub_(low).div_(max(high - low, 1e-5))
video = video.mul(255).add_(0.5).clamp_(0, 255).permute(0, 2, 3, 4, 1).to("cpu", torch.uint8)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (video,)
return VideoSysPipelineOutput(video=video)
def save_video(self, video, output_path):
save_video(video, output_path, fps=24)
|