File size: 6,153 Bytes
e2869a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59e245a
e2869a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import os
import uuid
import GPUtil
import gradio as gr
import psutil
import spaces
from videosys import CogVideoXConfig, CogVideoXPABConfig, VideoSysEngine
from transformers import pipeline

os.environ["GRADIO_TEMP_DIR"] = os.path.join(os.getcwd(), ".tmp_outputs")
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"

# ๋ฒˆ์—ญ๊ธฐ ์„ค์ •
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")

def translate_to_english(text):
    if any('\uAC00' <= char <= '\uD7A3' for char in text):
        return translator(text, max_length=512)[0]['translation_text']
    return text

def load_model(model_name, enable_video_sys=False, pab_threshold=[100, 850], pab_range=2):
    pab_config = CogVideoXPABConfig(spatial_threshold=pab_threshold, spatial_range=pab_range)
    config = CogVideoXConfig(model_name, enable_pab=enable_video_sys, pab_config=pab_config)
    engine = VideoSysEngine(config)
    return engine

def generate(engine, prompt, num_inference_steps=50, guidance_scale=6.0):
    translated_prompt = translate_to_english(prompt)
    video = engine.generate(translated_prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale).video[0]

    unique_filename = f"{uuid.uuid4().hex}.mp4"
    output_path = os.path.join("./.tmp_outputs", unique_filename)

    engine.save_video(video, output_path)
    return output_path

@spaces.GPU()
def generate_vanilla(model_name, prompt, num_inference_steps, guidance_scale, progress=gr.Progress(track_tqdm=True)):
    engine = load_model(model_name)
    video_path = generate(engine, prompt, num_inference_steps, guidance_scale)
    return video_path

@spaces.GPU()
def generate_vs(
    model_name,
    prompt,
    num_inference_steps,
    guidance_scale,
    threshold_start,
    threshold_end,
    gap,
    progress=gr.Progress(track_tqdm=True),
):
    threshold = [int(threshold_end), int(threshold_start)]
    gap = int(gap)
    engine = load_model(model_name, enable_video_sys=True, pab_threshold=threshold, pab_range=gap)
    video_path = generate(engine, prompt, num_inference_steps, guidance_scale)
    return video_path

def get_server_status():
    cpu_percent = psutil.cpu_percent()
    memory = psutil.virtual_memory()
    disk = psutil.disk_usage("/")
    try:
        gpus = GPUtil.getGPUs()
        if gpus:
            gpu = gpus[0]
            gpu_memory = f"{gpu.memoryUsed}/{gpu.memoryTotal}MB ({gpu.memoryUtil*100:.1f}%)"
        else:
            gpu_memory = "GPU๋ฅผ ์ฐพ์„ ์ˆ˜ ์—†์Œ"
    except:
        gpu_memory = "GPU ์ •๋ณด๋ฅผ ์‚ฌ์šฉํ•  ์ˆ˜ ์—†์Œ"

    return {
        "cpu": f"{cpu_percent}%",
        "memory": f"{memory.percent}%",
        "disk": f"{disk.percent}%",
        "gpu_memory": gpu_memory,
    }

def update_server_status():
    status = get_server_status()
    return (status["cpu"], status["memory"], status["disk"], status["gpu_memory"])

css = """
footer {
    visibility: hidden;
}
"""

with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
    with gr.Row():
        with gr.Column():
            prompt = gr.Textbox(label="ํ”„๋กฌํ”„ํŠธ (200๋‹จ์–ด ์ด๋‚ด)", value="๋ฐ”๋‹ค ์œ„์˜ ์ผ๋ชฐ.", lines=3)

            with gr.Column():
                gr.Markdown("**์ƒ์„ฑ ๋งค๊ฐœ๋ณ€์ˆ˜**<br>")
                with gr.Row():
                    model_name = gr.Radio(
                        ["THUDM/CogVideoX-2b", "THUDM/CogVideoX-5b"], label="๋ชจ๋ธ ์œ ํ˜•", value="THUDM/CogVideoX-2b"
                    )
                with gr.Row():
                    num_inference_steps = gr.Number(label="์ถ”๋ก  ๋‹จ๊ณ„", value=50)
                    guidance_scale = gr.Number(label="๊ฐ€์ด๋˜์Šค ์Šค์ผ€์ผ", value=6.0)
                with gr.Row():
                    pab_range = gr.Number(
                        label="PAB ๋ธŒ๋กœ๋“œ์บ์ŠคํŠธ ๋ฒ”์œ„", value=2, precision=0, info="๋ธŒ๋กœ๋“œ์บ์ŠคํŠธ ํƒ€์ž„์Šคํ… ๋ฒ”์œ„."
                    )
                    pab_threshold_start = gr.Number(label="PAB ์‹œ์ž‘ ํƒ€์ž„์Šคํ…", value=850, info="1000 ๋‹จ๊ณ„์—์„œ ์‹œ์ž‘.")
                    pab_threshold_end = gr.Number(label="PAB ์ข…๋ฃŒ ํƒ€์ž„์Šคํ…", value=100, info="0 ๋‹จ๊ณ„์—์„œ ์ข…๋ฃŒ.")
                with gr.Row():
                    generate_button_vs = gr.Button("โšก๏ธ VideoSys๋กœ ๋น„๋””์˜ค ์ƒ์„ฑ (๋” ๋น ๋ฆ„)")
                    generate_button = gr.Button("๐ŸŽฌ ๋น„๋””์˜ค ์ƒ์„ฑ (์›๋ณธ)")
                with gr.Column(elem_classes="server-status"):
                    gr.Markdown("#### ์„œ๋ฒ„ ์ƒํƒœ")

                    with gr.Row():
                        cpu_status = gr.Textbox(label="CPU", scale=1)
                        memory_status = gr.Textbox(label="๋ฉ”๋ชจ๋ฆฌ", scale=1)

                    with gr.Row():
                        disk_status = gr.Textbox(label="๋””์Šคํฌ", scale=1)
                        gpu_status = gr.Textbox(label="GPU ๋ฉ”๋ชจ๋ฆฌ", scale=1)

                    with gr.Row():
                        refresh_button = gr.Button("์ƒˆ๋กœ๊ณ ์นจ")

        with gr.Column():
            with gr.Row():
                video_output_vs = gr.Video(label="VideoSys๋ฅผ ์‚ฌ์šฉํ•œ CogVideoX", width=720, height=480)
            with gr.Row():
                video_output = gr.Video(label="CogVideoX", width=720, height=480)

    generate_button.click(
        generate_vanilla,
        inputs=[model_name, prompt, num_inference_steps, guidance_scale],
        outputs=[video_output],
        concurrency_id="gen",
        concurrency_limit=1,
    )

    generate_button_vs.click(
        generate_vs,
        inputs=[
            model_name,
            prompt,
            num_inference_steps,
            guidance_scale,
            pab_threshold_start,
            pab_threshold_end,
            pab_range,
        ],
        outputs=[video_output_vs],
        concurrency_id="gen",
        concurrency_limit=1,
    )

    refresh_button.click(update_server_status, outputs=[cpu_status, memory_status, disk_status, gpu_status])
    demo.load(update_server_status, outputs=[cpu_status, memory_status, disk_status, gpu_status], every=1)

if __name__ == "__main__":
    demo.queue(max_size=10, default_concurrency_limit=1)
    demo.launch()