Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,153 Bytes
e2869a6 59e245a e2869a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
import os
import uuid
import GPUtil
import gradio as gr
import psutil
import spaces
from videosys import CogVideoXConfig, CogVideoXPABConfig, VideoSysEngine
from transformers import pipeline
os.environ["GRADIO_TEMP_DIR"] = os.path.join(os.getcwd(), ".tmp_outputs")
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
# ๋ฒ์ญ๊ธฐ ์ค์
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
def translate_to_english(text):
if any('\uAC00' <= char <= '\uD7A3' for char in text):
return translator(text, max_length=512)[0]['translation_text']
return text
def load_model(model_name, enable_video_sys=False, pab_threshold=[100, 850], pab_range=2):
pab_config = CogVideoXPABConfig(spatial_threshold=pab_threshold, spatial_range=pab_range)
config = CogVideoXConfig(model_name, enable_pab=enable_video_sys, pab_config=pab_config)
engine = VideoSysEngine(config)
return engine
def generate(engine, prompt, num_inference_steps=50, guidance_scale=6.0):
translated_prompt = translate_to_english(prompt)
video = engine.generate(translated_prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale).video[0]
unique_filename = f"{uuid.uuid4().hex}.mp4"
output_path = os.path.join("./.tmp_outputs", unique_filename)
engine.save_video(video, output_path)
return output_path
@spaces.GPU()
def generate_vanilla(model_name, prompt, num_inference_steps, guidance_scale, progress=gr.Progress(track_tqdm=True)):
engine = load_model(model_name)
video_path = generate(engine, prompt, num_inference_steps, guidance_scale)
return video_path
@spaces.GPU()
def generate_vs(
model_name,
prompt,
num_inference_steps,
guidance_scale,
threshold_start,
threshold_end,
gap,
progress=gr.Progress(track_tqdm=True),
):
threshold = [int(threshold_end), int(threshold_start)]
gap = int(gap)
engine = load_model(model_name, enable_video_sys=True, pab_threshold=threshold, pab_range=gap)
video_path = generate(engine, prompt, num_inference_steps, guidance_scale)
return video_path
def get_server_status():
cpu_percent = psutil.cpu_percent()
memory = psutil.virtual_memory()
disk = psutil.disk_usage("/")
try:
gpus = GPUtil.getGPUs()
if gpus:
gpu = gpus[0]
gpu_memory = f"{gpu.memoryUsed}/{gpu.memoryTotal}MB ({gpu.memoryUtil*100:.1f}%)"
else:
gpu_memory = "GPU๋ฅผ ์ฐพ์ ์ ์์"
except:
gpu_memory = "GPU ์ ๋ณด๋ฅผ ์ฌ์ฉํ ์ ์์"
return {
"cpu": f"{cpu_percent}%",
"memory": f"{memory.percent}%",
"disk": f"{disk.percent}%",
"gpu_memory": gpu_memory,
}
def update_server_status():
status = get_server_status()
return (status["cpu"], status["memory"], status["disk"], status["gpu_memory"])
css = """
footer {
visibility: hidden;
}
"""
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="ํ๋กฌํํธ (200๋จ์ด ์ด๋ด)", value="๋ฐ๋ค ์์ ์ผ๋ชฐ.", lines=3)
with gr.Column():
gr.Markdown("**์์ฑ ๋งค๊ฐ๋ณ์**<br>")
with gr.Row():
model_name = gr.Radio(
["THUDM/CogVideoX-2b", "THUDM/CogVideoX-5b"], label="๋ชจ๋ธ ์ ํ", value="THUDM/CogVideoX-2b"
)
with gr.Row():
num_inference_steps = gr.Number(label="์ถ๋ก ๋จ๊ณ", value=50)
guidance_scale = gr.Number(label="๊ฐ์ด๋์ค ์ค์ผ์ผ", value=6.0)
with gr.Row():
pab_range = gr.Number(
label="PAB ๋ธ๋ก๋์บ์คํธ ๋ฒ์", value=2, precision=0, info="๋ธ๋ก๋์บ์คํธ ํ์์คํ
๋ฒ์."
)
pab_threshold_start = gr.Number(label="PAB ์์ ํ์์คํ
", value=850, info="1000 ๋จ๊ณ์์ ์์.")
pab_threshold_end = gr.Number(label="PAB ์ข
๋ฃ ํ์์คํ
", value=100, info="0 ๋จ๊ณ์์ ์ข
๋ฃ.")
with gr.Row():
generate_button_vs = gr.Button("โก๏ธ VideoSys๋ก ๋น๋์ค ์์ฑ (๋ ๋น ๋ฆ)")
generate_button = gr.Button("๐ฌ ๋น๋์ค ์์ฑ (์๋ณธ)")
with gr.Column(elem_classes="server-status"):
gr.Markdown("#### ์๋ฒ ์ํ")
with gr.Row():
cpu_status = gr.Textbox(label="CPU", scale=1)
memory_status = gr.Textbox(label="๋ฉ๋ชจ๋ฆฌ", scale=1)
with gr.Row():
disk_status = gr.Textbox(label="๋์คํฌ", scale=1)
gpu_status = gr.Textbox(label="GPU ๋ฉ๋ชจ๋ฆฌ", scale=1)
with gr.Row():
refresh_button = gr.Button("์๋ก๊ณ ์นจ")
with gr.Column():
with gr.Row():
video_output_vs = gr.Video(label="VideoSys๋ฅผ ์ฌ์ฉํ CogVideoX", width=720, height=480)
with gr.Row():
video_output = gr.Video(label="CogVideoX", width=720, height=480)
generate_button.click(
generate_vanilla,
inputs=[model_name, prompt, num_inference_steps, guidance_scale],
outputs=[video_output],
concurrency_id="gen",
concurrency_limit=1,
)
generate_button_vs.click(
generate_vs,
inputs=[
model_name,
prompt,
num_inference_steps,
guidance_scale,
pab_threshold_start,
pab_threshold_end,
pab_range,
],
outputs=[video_output_vs],
concurrency_id="gen",
concurrency_limit=1,
)
refresh_button.click(update_server_status, outputs=[cpu_status, memory_status, disk_status, gpu_status])
demo.load(update_server_status, outputs=[cpu_status, memory_status, disk_status, gpu_status], every=1)
if __name__ == "__main__":
demo.queue(max_size=10, default_concurrency_limit=1)
demo.launch() |