Spaces:
Running
on
Zero
Running
on
Zero
File size: 39,204 Bytes
ab7be96 a28e78a ab7be96 a28e78a ab7be96 a28e78a ab7be96 a28e78a ab7be96 a28e78a ab7be96 a28e78a ab7be96 a28e78a ab7be96 a28e78a ab7be96 a28e78a ab7be96 a28e78a ab7be96 a28e78a ab7be96 a28e78a ab7be96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 |
import html
import json
import os
import re
from typing import Optional, Tuple, Union
import ftfy
import torch
from diffusers.models import AutoencoderKL
from transformers import AutoTokenizer, T5EncoderModel
from videosys.core.pab_mgr import PABConfig, set_pab_manager
from videosys.core.pipeline import VideoSysPipeline, VideoSysPipelineOutput
from videosys.models.autoencoders.autoencoder_kl_open_sora import OpenSoraVAE_V1_2
from videosys.models.transformers.open_sora_transformer_3d import STDiT3_XL_2
from videosys.schedulers.scheduling_rflow_open_sora import RFLOW
from videosys.utils.utils import save_video
from .data_process import get_image_size, get_num_frames, prepare_multi_resolution_info, read_from_path
os.environ["TOKENIZERS_PARALLELISM"] = "true"
BAD_PUNCT_REGEX = re.compile(
r"[" + "#®•©™&@·º½¾¿¡§~" + "\)" + "\(" + "\]" + "\[" + "\}" + "\{" + "\|" + "\\" + "\/" + "\*" + r"]{1,}"
) # noqa
class OpenSoraPABConfig(PABConfig):
def __init__(
self,
steps: int = 50,
spatial_broadcast: bool = True,
spatial_threshold: list = [450, 930],
spatial_range: int = 2,
temporal_broadcast: bool = True,
temporal_threshold: list = [450, 930],
temporal_range: int = 4,
cross_broadcast: bool = True,
cross_threshold: list = [450, 930],
cross_range: int = 6,
mlp_broadcast: bool = True,
mlp_spatial_broadcast_config: dict = {
676: {"block": [0, 1, 2, 3, 4], "skip_count": 2},
788: {"block": [0, 1, 2, 3, 4], "skip_count": 2},
864: {"block": [0, 1, 2, 3, 4], "skip_count": 2},
},
mlp_temporal_broadcast_config: dict = {
676: {"block": [0, 1, 2, 3, 4], "skip_count": 2},
788: {"block": [0, 1, 2, 3, 4], "skip_count": 2},
864: {"block": [0, 1, 2, 3, 4], "skip_count": 2},
},
):
super().__init__(
steps=steps,
spatial_broadcast=spatial_broadcast,
spatial_threshold=spatial_threshold,
spatial_range=spatial_range,
temporal_broadcast=temporal_broadcast,
temporal_threshold=temporal_threshold,
temporal_range=temporal_range,
cross_broadcast=cross_broadcast,
cross_threshold=cross_threshold,
cross_range=cross_range,
mlp_broadcast=mlp_broadcast,
mlp_spatial_broadcast_config=mlp_spatial_broadcast_config,
mlp_temporal_broadcast_config=mlp_temporal_broadcast_config,
)
class OpenSoraConfig:
"""
This config is to instantiate a `OpenSoraPipeline` class for video generation.
To be specific, this config will be passed to engine by `VideoSysEngine(config)`.
In the engine, it will be used to instantiate the corresponding pipeline class.
And the engine will call the `generate` function of the pipeline to generate the video.
If you want to explore the detail of generation, please refer to the pipeline class below.
Args:
transformer (str):
The transformer model to use. Defaults to "hpcai-tech/OpenSora-STDiT-v3".
vae (str):
The VAE model to use. Defaults to "hpcai-tech/OpenSora-VAE-v1.2".
text_encoder (str):
The text encoder model to use. Defaults to "DeepFloyd/t5-v1_1-xxl".
num_gpus (int):
The number of GPUs to use. Defaults to 1.
num_sampling_steps (int):
The number of sampling steps. Defaults to 30.
cfg_scale (float):
The configuration scale. Defaults to 7.0.
tiling_size (int):
The tiling size. Defaults to 4.
enable_flash_attn (bool):
Whether to enable Flash Attention. Defaults to False.
enable_pab (bool):
Whether to enable Pyramid Attention Broadcast. Defaults to False.
pab_config (CogVideoXPABConfig):
The configuration for Pyramid Attention Broadcast. Defaults to `LattePABConfig()`.
Examples:
```python
from videosys import OpenSoraConfig, VideoSysEngine
# change num_gpus for multi-gpu inference
# sampling parameters are defined in the config
config = OpenSoraConfig(num_sampling_steps=30, cfg_scale=7.0, num_gpus=1)
engine = VideoSysEngine(config)
prompt = "Sunset over the sea."
# num frames: 2s, 4s, 8s, 16s
# resolution: 144p, 240p, 360p, 480p, 720p
# aspect ratio: 9:16, 16:9, 3:4, 4:3, 1:1
video = engine.generate(
prompt=prompt,
resolution="480p",
aspect_ratio="9:16",
num_frames="2s",
).video[0]
engine.save_video(video, f"./outputs/{prompt}.mp4")
```
"""
def __init__(
self,
transformer: str = "hpcai-tech/OpenSora-STDiT-v3",
vae: str = "hpcai-tech/OpenSora-VAE-v1.2",
text_encoder: str = "DeepFloyd/t5-v1_1-xxl",
# ======== distributed ========
num_gpus: int = 1,
# ======== scheduler ========
num_sampling_steps: int = 30,
cfg_scale: float = 7.0,
# ======== vae ========
tiling_size: int = 4,
# ======== speedup ========
enable_flash_attn: bool = False,
# ======== pab ========
enable_pab: bool = False,
pab_config: PABConfig = OpenSoraPABConfig(),
):
self.pipeline_cls = OpenSoraPipeline
self.transformer = transformer
self.vae = vae
self.text_encoder = text_encoder
# ======== distributed ========
self.num_gpus = num_gpus
# ======== scheduler ========
self.num_sampling_steps = num_sampling_steps
self.cfg_scale = cfg_scale
# ======== vae ========
self.tiling_size = tiling_size
# ======== speedup ========
self.enable_flash_attn = enable_flash_attn
# ======== pab ========
self.enable_pab = enable_pab
self.pab_config = pab_config
class OpenSoraPipeline(VideoSysPipeline):
r"""
Pipeline for text-to-image generation using PixArt-Alpha.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`T5EncoderModel`]):
Frozen text-encoder. PixArt-Alpha uses
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
[t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant.
tokenizer (`T5Tokenizer`):
Tokenizer of class
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
transformer ([`Transformer2DModel`]):
A text conditioned `Transformer2DModel` to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
"""
bad_punct_regex = re.compile(
r"[" + "#®•©™&@·º½¾¿¡§~" + "\)" + "\(" + "\]" + "\[" + "\}" + "\{" + "\|" + "\\" + "\/" + "\*" + r"]{1,}"
) # noqa
_optional_components = ["tokenizer", "text_encoder"]
model_cpu_offload_seq = "text_encoder->transformer->vae"
def __init__(
self,
config: OpenSoraConfig,
text_encoder: Optional[T5EncoderModel] = None,
tokenizer: Optional[AutoTokenizer] = None,
vae: Optional[AutoencoderKL] = None,
transformer: Optional[STDiT3_XL_2] = None,
scheduler: Optional[RFLOW] = None,
device: torch.device = torch.device("cuda"),
dtype: torch.dtype = torch.bfloat16,
):
super().__init__()
self._config = config
self._device = device
self._dtype = dtype
# initialize the model if not provided
if text_encoder is None:
text_encoder = T5EncoderModel.from_pretrained(config.text_encoder).to(dtype)
if tokenizer is None:
tokenizer = AutoTokenizer.from_pretrained(config.text_encoder)
if vae is None:
vae = OpenSoraVAE_V1_2(
from_pretrained=config.vae,
micro_frame_size=17,
micro_batch_size=config.tiling_size,
).to(dtype)
if transformer is None:
transformer = STDiT3_XL_2(
from_pretrained=config.transformer,
qk_norm=True,
enable_flash_attn=config.enable_flash_attn,
in_channels=vae.out_channels,
caption_channels=text_encoder.config.d_model,
model_max_length=300,
).to(device, dtype)
if scheduler is None:
scheduler = RFLOW(
use_timestep_transform=True, num_sampling_steps=config.num_sampling_steps, cfg_scale=config.cfg_scale
)
# pab
if config.enable_pab:
set_pab_manager(config.pab_config)
# set eval and device
self.set_eval_and_device(device, text_encoder, vae, transformer)
self.register_modules(
text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler, tokenizer=tokenizer
)
def get_text_embeddings(self, texts):
text_tokens_and_mask = self.tokenizer(
texts,
max_length=300,
padding="max_length",
truncation=True,
return_attention_mask=True,
add_special_tokens=True,
return_tensors="pt",
)
input_ids = text_tokens_and_mask["input_ids"].to(self.device)
attention_mask = text_tokens_and_mask["attention_mask"].to(self.device)
with torch.no_grad():
text_encoder_embs = self.text_encoder(
input_ids=input_ids,
attention_mask=attention_mask,
)["last_hidden_state"].detach()
return text_encoder_embs, attention_mask
def encode_prompt(self, text):
caption_embs, emb_masks = self.get_text_embeddings(text)
caption_embs = caption_embs[:, None]
return dict(y=caption_embs, mask=emb_masks)
def null_embed(self, n):
null_y = self.transformer.y_embedder.y_embedding[None].repeat(n, 1, 1)[:, None]
return null_y
@staticmethod
def _basic_clean(text):
text = ftfy.fix_text(text)
text = html.unescape(html.unescape(text))
return text.strip()
def _clean_caption(self, caption):
import urllib.parse as ul
from bs4 import BeautifulSoup
caption = str(caption)
caption = ul.unquote_plus(caption)
caption = caption.strip().lower()
caption = re.sub("<person>", "person", caption)
# urls:
caption = re.sub(
r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
"",
caption,
) # regex for urls
caption = re.sub(
r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
"",
caption,
) # regex for urls
# html:
caption = BeautifulSoup(caption, features="html.parser").text
# @<nickname>
caption = re.sub(r"@[\w\d]+\b", "", caption)
# 31C0—31EF CJK Strokes
# 31F0—31FF Katakana Phonetic Extensions
# 3200—32FF Enclosed CJK Letters and Months
# 3300—33FF CJK Compatibility
# 3400—4DBF CJK Unified Ideographs Extension A
# 4DC0—4DFF Yijing Hexagram Symbols
# 4E00—9FFF CJK Unified Ideographs
caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
#######################################################
# все виды тире / all types of dash --> "-"
caption = re.sub(
r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa
"-",
caption,
)
# кавычки к одному стандарту
caption = re.sub(r"[`´«»“”¨]", '"', caption)
caption = re.sub(r"[‘’]", "'", caption)
# "
caption = re.sub(r""?", "", caption)
# &
caption = re.sub(r"&", "", caption)
# ip adresses:
caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)
# article ids:
caption = re.sub(r"\d:\d\d\s+$", "", caption)
# \n
caption = re.sub(r"\\n", " ", caption)
# "#123"
caption = re.sub(r"#\d{1,3}\b", "", caption)
# "#12345.."
caption = re.sub(r"#\d{5,}\b", "", caption)
# "123456.."
caption = re.sub(r"\b\d{6,}\b", "", caption)
# filenames:
caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption)
#
caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT"""
caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT"""
caption = re.sub(BAD_PUNCT_REGEX, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT
caption = re.sub(r"\s+\.\s+", r" ", caption) # " . "
# this-is-my-cute-cat / this_is_my_cute_cat
regex2 = re.compile(r"(?:\-|\_)")
if len(re.findall(regex2, caption)) > 3:
caption = re.sub(regex2, " ", caption)
caption = self._basic_clean(caption)
caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640
caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc
caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231
caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption)
caption = re.sub(r"\bpage\s+\d+\b", "", caption)
caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a...
caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)
caption = re.sub(r"\b\s+\:\s+", r": ", caption)
caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
caption = re.sub(r"\s+", " ", caption)
caption.strip()
caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
caption = re.sub(r"^\.\S+$", "", caption)
return caption.strip()
def text_preprocessing(self, text, use_text_preprocessing: bool = True):
if use_text_preprocessing:
# The exact text cleaning as was in the training stage:
text = self._clean_caption(text)
text = self._clean_caption(text)
return text
else:
return text.lower().strip()
@torch.no_grad()
def generate(
self,
prompt: str,
resolution="480p",
aspect_ratio="9:16",
num_frames: int = 51,
loop: int = 1,
llm_refine: bool = False,
negative_prompt: str = "",
ms: Optional[str] = "",
refs: Optional[str] = "",
aes: float = 6.5,
flow: Optional[float] = None,
camera_motion: Optional[float] = None,
condition_frame_length: int = 5,
align: int = 5,
condition_frame_edit: float = 0.0,
return_dict: bool = True,
verbose: bool = True,
) -> Union[VideoSysPipelineOutput, Tuple]:
"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
resolution (`str`, *optional*, defaults to `"480p"`):
The resolution of the generated video.
aspect_ratio (`str`, *optional*, defaults to `"9:16"`):
The aspect ratio of the generated video.
num_frames (`int`, *optional*, defaults to 51):
The number of frames to generate.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
num_inference_steps (`int`, *optional*, defaults to 100):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
timesteps (`List[int]`, *optional*):
Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`
timesteps are used. Must be in descending order.
guidance_scale (`float`, *optional*, defaults to 7.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
height (`int`, *optional*, defaults to self.unet.config.sample_size):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to self.unet.config.sample_size):
The width in pixels of the generated image.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. For PixArt-Alpha this negative prompt should be "". If not
provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
clean_caption (`bool`, *optional*, defaults to `True`):
Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to
be installed. If the dependencies are not installed, the embeddings will be created from the raw
prompt.
mask_feature (`bool` defaults to `True`): If set to `True`, the text embeddings will be masked.
Examples:
Returns:
[`~pipelines.ImagePipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
returned where the first element is a list with the generated images
"""
# == basic ==
fps = 24
image_size = get_image_size(resolution, aspect_ratio)
num_frames = get_num_frames(num_frames)
# == prepare batch prompts ==
batch_prompts = [prompt]
ms = [ms]
refs = [refs]
# == get json from prompts ==
batch_prompts, refs, ms = extract_json_from_prompts(batch_prompts, refs, ms)
# == get reference for condition ==
refs = collect_references_batch(refs, self.vae, image_size)
# == multi-resolution info ==
model_args = prepare_multi_resolution_info(
"OpenSora", len(batch_prompts), image_size, num_frames, fps, self._device, self._dtype
)
# == process prompts step by step ==
# 0. split prompt
# each element in the list is [prompt_segment_list, loop_idx_list]
batched_prompt_segment_list = []
batched_loop_idx_list = []
for prompt in batch_prompts:
prompt_segment_list, loop_idx_list = split_prompt(prompt)
batched_prompt_segment_list.append(prompt_segment_list)
batched_loop_idx_list.append(loop_idx_list)
# 1. refine prompt by openai
# if llm_refine:
# only call openai API when
# 1. seq parallel is not enabled
# 2. seq parallel is enabled and the process is rank 0
# if not enable_sequence_parallelism or (enable_sequence_parallelism and coordinator.is_master()):
# for idx, prompt_segment_list in enumerate(batched_prompt_segment_list):
# batched_prompt_segment_list[idx] = refine_prompts_by_openai(prompt_segment_list)
# # sync the prompt if using seq parallel
# if enable_sequence_parallelism:
# coordinator.block_all()
# prompt_segment_length = [
# len(prompt_segment_list) for prompt_segment_list in batched_prompt_segment_list
# ]
# # flatten the prompt segment list
# batched_prompt_segment_list = [
# prompt_segment
# for prompt_segment_list in batched_prompt_segment_list
# for prompt_segment in prompt_segment_list
# ]
# # create a list of size equal to world size
# broadcast_obj_list = [batched_prompt_segment_list] * coordinator.world_size
# dist.broadcast_object_list(broadcast_obj_list, 0)
# # recover the prompt list
# batched_prompt_segment_list = []
# segment_start_idx = 0
# all_prompts = broadcast_obj_list[0]
# for num_segment in prompt_segment_length:
# batched_prompt_segment_list.append(
# all_prompts[segment_start_idx : segment_start_idx + num_segment]
# )
# segment_start_idx += num_segment
# 2. append score
for idx, prompt_segment_list in enumerate(batched_prompt_segment_list):
batched_prompt_segment_list[idx] = append_score_to_prompts(
prompt_segment_list,
aes=aes,
flow=flow,
camera_motion=camera_motion,
)
# 3. clean prompt with T5
for idx, prompt_segment_list in enumerate(batched_prompt_segment_list):
batched_prompt_segment_list[idx] = [self.text_preprocessing(prompt) for prompt in prompt_segment_list]
# 4. merge to obtain the final prompt
batch_prompts = []
for prompt_segment_list, loop_idx_list in zip(batched_prompt_segment_list, batched_loop_idx_list):
batch_prompts.append(merge_prompt(prompt_segment_list, loop_idx_list))
# == Iter over loop generation ==
video_clips = []
for loop_i in range(loop):
# == get prompt for loop i ==
batch_prompts_loop = extract_prompts_loop(batch_prompts, loop_i)
# == add condition frames for loop ==
if loop_i > 0:
refs, ms = append_generated(
self.vae, video_clips[-1], refs, ms, loop_i, condition_frame_length, condition_frame_edit
)
# == sampling ==
input_size = (num_frames, *image_size)
latent_size = self.vae.get_latent_size(input_size)
z = torch.randn(
len(batch_prompts), self.vae.out_channels, *latent_size, device=self._device, dtype=self._dtype
)
model_args.update(self.encode_prompt(batch_prompts_loop))
y_null = self.null_embed(len(batch_prompts_loop))
masks = apply_mask_strategy(z, refs, ms, loop_i, align=align)
samples = self.scheduler.sample(
self.transformer,
z=z,
model_args=model_args,
y_null=y_null,
device=self._device,
progress=verbose,
mask=masks,
)
samples = self.vae.decode(samples.to(self._dtype), num_frames=num_frames)
video_clips.append(samples)
for i in range(1, loop):
video_clips[i] = video_clips[i][:, dframe_to_frame(condition_frame_length) :]
video = torch.cat(video_clips, dim=1)
low, high = -1, 1
video.clamp_(min=low, max=high)
video.sub_(low).div_(max(high - low, 1e-5))
video = video.mul(255).add_(0.5).clamp_(0, 255).permute(0, 2, 3, 4, 1).to("cpu", torch.uint8)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (video,)
return VideoSysPipelineOutput(video=video)
def save_video(self, video, output_path):
save_video(video, output_path, fps=24)
def load_prompts(prompt_path, start_idx=None, end_idx=None):
with open(prompt_path, "r") as f:
prompts = [line.strip() for line in f.readlines()]
prompts = prompts[start_idx:end_idx]
return prompts
def get_save_path_name(
save_dir,
sample_name=None, # prefix
sample_idx=None, # sample index
prompt=None, # used prompt
prompt_as_path=False, # use prompt as path
num_sample=1, # number of samples to generate for one prompt
k=None, # kth sample
):
if sample_name is None:
sample_name = "" if prompt_as_path else "sample"
sample_name_suffix = prompt if prompt_as_path else f"_{sample_idx:04d}"
save_path = os.path.join(save_dir, f"{sample_name}{sample_name_suffix[:50]}")
if num_sample != 1:
save_path = f"{save_path}-{k}"
return save_path
def get_eval_save_path_name(
save_dir,
id, # add id parameter
sample_name=None, # prefix
sample_idx=None, # sample index
prompt=None, # used prompt
prompt_as_path=False, # use prompt as path
num_sample=1, # number of samples to generate for one prompt
k=None, # kth sample
):
if sample_name is None:
sample_name = "" if prompt_as_path else "sample"
save_path = os.path.join(save_dir, f"{id}")
if num_sample != 1:
save_path = f"{save_path}-{k}"
return save_path
def append_score_to_prompts(prompts, aes=None, flow=None, camera_motion=None):
new_prompts = []
for prompt in prompts:
new_prompt = prompt
if aes is not None and "aesthetic score:" not in prompt:
new_prompt = f"{new_prompt} aesthetic score: {aes:.1f}."
if flow is not None and "motion score:" not in prompt:
new_prompt = f"{new_prompt} motion score: {flow:.1f}."
if camera_motion is not None and "camera motion:" not in prompt:
new_prompt = f"{new_prompt} camera motion: {camera_motion}."
new_prompts.append(new_prompt)
return new_prompts
def extract_json_from_prompts(prompts, reference, mask_strategy):
ret_prompts = []
for i, prompt in enumerate(prompts):
parts = re.split(r"(?=[{])", prompt)
assert len(parts) <= 2, f"Invalid prompt: {prompt}"
ret_prompts.append(parts[0])
if len(parts) > 1:
additional_info = json.loads(parts[1])
for key in additional_info:
assert key in ["reference_path", "mask_strategy"], f"Invalid key: {key}"
if key == "reference_path":
reference[i] = additional_info[key]
elif key == "mask_strategy":
mask_strategy[i] = additional_info[key]
return ret_prompts, reference, mask_strategy
def collect_references_batch(reference_paths, vae, image_size):
refs_x = [] # refs_x: [batch, ref_num, C, T, H, W]
for reference_path in reference_paths:
if reference_path == "":
refs_x.append([])
continue
ref_path = reference_path.split(";")
ref = []
for r_path in ref_path:
r = read_from_path(r_path, image_size, transform_name="resize_crop")
r_x = vae.encode(r.unsqueeze(0).to(vae.device, vae.dtype))
r_x = r_x.squeeze(0)
ref.append(r_x)
refs_x.append(ref)
return refs_x
def extract_prompts_loop(prompts, num_loop):
ret_prompts = []
for prompt in prompts:
if prompt.startswith("|0|"):
prompt_list = prompt.split("|")[1:]
text_list = []
for i in range(0, len(prompt_list), 2):
start_loop = int(prompt_list[i])
text = prompt_list[i + 1]
end_loop = int(prompt_list[i + 2]) if i + 2 < len(prompt_list) else num_loop + 1
text_list.extend([text] * (end_loop - start_loop))
prompt = text_list[num_loop]
ret_prompts.append(prompt)
return ret_prompts
def split_prompt(prompt_text):
if prompt_text.startswith("|0|"):
# this is for prompts which look like
# |0| a beautiful day |1| a sunny day |2| a rainy day
# we want to parse it into a list of prompts with the loop index
prompt_list = prompt_text.split("|")[1:]
text_list = []
loop_idx = []
for i in range(0, len(prompt_list), 2):
start_loop = int(prompt_list[i])
text = prompt_list[i + 1].strip()
text_list.append(text)
loop_idx.append(start_loop)
return text_list, loop_idx
else:
return [prompt_text], None
def merge_prompt(text_list, loop_idx_list=None):
if loop_idx_list is None:
return text_list[0]
else:
prompt = ""
for i, text in enumerate(text_list):
prompt += f"|{loop_idx_list[i]}|{text}"
return prompt
MASK_DEFAULT = ["0", "0", "0", "0", "1", "0"]
def parse_mask_strategy(mask_strategy):
mask_batch = []
if mask_strategy == "" or mask_strategy is None:
return mask_batch
mask_strategy = mask_strategy.split(";")
for mask in mask_strategy:
mask_group = mask.split(",")
num_group = len(mask_group)
assert num_group >= 1 and num_group <= 6, f"Invalid mask strategy: {mask}"
mask_group.extend(MASK_DEFAULT[num_group:])
for i in range(5):
mask_group[i] = int(mask_group[i])
mask_group[5] = float(mask_group[5])
mask_batch.append(mask_group)
return mask_batch
def find_nearest_point(value, point, max_value):
t = value // point
if value % point > point / 2 and t < max_value // point - 1:
t += 1
return t * point
def apply_mask_strategy(z, refs_x, mask_strategys, loop_i, align=None):
masks = []
no_mask = True
for i, mask_strategy in enumerate(mask_strategys):
no_mask = False
mask = torch.ones(z.shape[2], dtype=torch.float, device=z.device)
mask_strategy = parse_mask_strategy(mask_strategy)
for mst in mask_strategy:
loop_id, m_id, m_ref_start, m_target_start, m_length, edit_ratio = mst
if loop_id != loop_i:
continue
ref = refs_x[i][m_id]
if m_ref_start < 0:
# ref: [C, T, H, W]
m_ref_start = ref.shape[1] + m_ref_start
if m_target_start < 0:
# z: [B, C, T, H, W]
m_target_start = z.shape[2] + m_target_start
if align is not None:
m_ref_start = find_nearest_point(m_ref_start, align, ref.shape[1])
m_target_start = find_nearest_point(m_target_start, align, z.shape[2])
m_length = min(m_length, z.shape[2] - m_target_start, ref.shape[1] - m_ref_start)
z[i, :, m_target_start : m_target_start + m_length] = ref[:, m_ref_start : m_ref_start + m_length]
mask[m_target_start : m_target_start + m_length] = edit_ratio
masks.append(mask)
if no_mask:
return None
masks = torch.stack(masks)
return masks
def append_generated(vae, generated_video, refs_x, mask_strategy, loop_i, condition_frame_length, condition_frame_edit):
ref_x = vae.encode(generated_video)
for j, refs in enumerate(refs_x):
if refs is None:
refs_x[j] = [ref_x[j]]
else:
refs.append(ref_x[j])
if mask_strategy[j] is None or mask_strategy[j] == "":
mask_strategy[j] = ""
else:
mask_strategy[j] += ";"
mask_strategy[
j
] += f"{loop_i},{len(refs)-1},-{condition_frame_length},0,{condition_frame_length},{condition_frame_edit}"
return refs_x, mask_strategy
def dframe_to_frame(num):
assert num % 5 == 0, f"Invalid num: {num}"
return num // 5 * 17
OPENAI_CLIENT = None
REFINE_PROMPTS = None
REFINE_PROMPTS_PATH = "assets/texts/t2v_pllava.txt"
REFINE_PROMPTS_TEMPLATE = """
You need to refine user's input prompt. The user's input prompt is used for video generation task. You need to refine the user's prompt to make it more suitable for the task. Here are some examples of refined prompts:
{}
The refined prompt should pay attention to all objects in the video. The description should be useful for AI to re-generate the video. The description should be no more than six sentences. The refined prompt should be in English.
"""
RANDOM_PROMPTS = None
RANDOM_PROMPTS_TEMPLATE = """
You need to generate one input prompt for video generation task. The prompt should be suitable for the task. Here are some examples of refined prompts:
{}
The prompt should pay attention to all objects in the video. The description should be useful for AI to re-generate the video. The description should be no more than six sentences. The prompt should be in English.
"""
def get_openai_response(sys_prompt, usr_prompt, model="gpt-4o"):
global OPENAI_CLIENT
if OPENAI_CLIENT is None:
from openai import OpenAI
OPENAI_CLIENT = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
completion = OPENAI_CLIENT.chat.completions.create(
model=model,
messages=[
{
"role": "system",
"content": sys_prompt,
}, # <-- This is the system message that provides context to the model
{
"role": "user",
"content": usr_prompt,
}, # <-- This is the user message for which the model will generate a response
],
)
return completion.choices[0].message.content
def get_random_prompt_by_openai():
global RANDOM_PROMPTS
if RANDOM_PROMPTS is None:
examples = load_prompts(REFINE_PROMPTS_PATH)
RANDOM_PROMPTS = RANDOM_PROMPTS_TEMPLATE.format("\n".join(examples))
response = get_openai_response(RANDOM_PROMPTS, "Generate one example.")
return response
def refine_prompt_by_openai(prompt):
global REFINE_PROMPTS
if REFINE_PROMPTS is None:
examples = load_prompts(REFINE_PROMPTS_PATH)
REFINE_PROMPTS = REFINE_PROMPTS_TEMPLATE.format("\n".join(examples))
response = get_openai_response(REFINE_PROMPTS, prompt)
return response
def has_openai_key():
return "OPENAI_API_KEY" in os.environ
def refine_prompts_by_openai(prompts):
new_prompts = []
for prompt in prompts:
try:
if prompt.strip() == "":
new_prompt = get_random_prompt_by_openai()
print(f"[Info] Empty prompt detected, generate random prompt: {new_prompt}")
else:
new_prompt = refine_prompt_by_openai(prompt)
print(f"[Info] Refine prompt: {prompt} -> {new_prompt}")
new_prompts.append(new_prompt)
except Exception as e:
print(f"[Warning] Failed to refine prompt: {prompt} due to {e}")
new_prompts.append(prompt)
return new_prompts
def add_watermark(
input_video_path, watermark_image_path="./assets/images/watermark/watermark.png", output_video_path=None
):
# execute this command in terminal with subprocess
# return if the process is successful
if output_video_path is None:
output_video_path = input_video_path.replace(".mp4", "_watermark.mp4")
cmd = f'ffmpeg -y -i {input_video_path} -i {watermark_image_path} -filter_complex "[1][0]scale2ref=oh*mdar:ih*0.1[logo][video];[video][logo]overlay" {output_video_path}'
exit_code = os.system(cmd)
is_success = exit_code == 0
return is_success
|