File size: 42,659 Bytes
07c6a04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab7be96
07c6a04
ab7be96
07c6a04
 
 
 
 
 
 
 
 
 
ab7be96
07c6a04
 
ab7be96
07c6a04
 
ab7be96
 
 
07c6a04
 
 
 
 
 
ab7be96
07c6a04
 
 
 
 
 
 
 
 
 
 
ab7be96
07c6a04
 
ab7be96
07c6a04
 
ab7be96
 
 
 
07c6a04
 
 
 
a28e78a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07c6a04
 
 
a28e78a
 
 
07c6a04
 
 
 
 
 
 
 
 
 
 
a28e78a
 
 
 
07c6a04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab7be96
07c6a04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
# Adapted from Latte

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# Latte: https://github.com/Vchitect/Latte
# --------------------------------------------------------

import html
import inspect
import re
import urllib.parse as ul
from typing import Callable, List, Optional, Tuple, Union

import einops
import ftfy
import torch
import torch.distributed as dist
import tqdm
from bs4 import BeautifulSoup
from diffusers.image_processor import VaeImageProcessor
from diffusers.models import AutoencoderKL, AutoencoderKLTemporalDecoder
from diffusers.schedulers import DDIMScheduler
from diffusers.utils.torch_utils import randn_tensor
from transformers import T5EncoderModel, T5Tokenizer

from videosys.core.pab_mgr import PABConfig, set_pab_manager, update_steps
from videosys.core.pipeline import VideoSysPipeline, VideoSysPipelineOutput
from videosys.models.transformers.latte_transformer_3d import LatteT2V
from videosys.utils.logging import logger
from videosys.utils.utils import save_video


class LattePABConfig(PABConfig):
    def __init__(
        self,
        steps: int = 50,
        spatial_broadcast: bool = True,
        spatial_threshold: list = [100, 800],
        spatial_range: int = 2,
        temporal_broadcast: bool = True,
        temporal_threshold: list = [100, 800],
        temporal_range: int = 3,
        cross_broadcast: bool = True,
        cross_threshold: list = [100, 800],
        cross_range: int = 6,
        mlp_broadcast: bool = True,
        mlp_spatial_broadcast_config: dict = {
            720: {"block": [0, 1, 2, 3, 4], "skip_count": 2},
            640: {"block": [0, 1, 2, 3, 4], "skip_count": 2},
            560: {"block": [0, 1, 2, 3, 4], "skip_count": 2},
            480: {"block": [0, 1, 2, 3, 4], "skip_count": 2},
            400: {"block": [0, 1, 2, 3, 4], "skip_count": 2},
        },
        mlp_temporal_broadcast_config: dict = {
            720: {"block": [0, 1, 2, 3, 4], "skip_count": 2},
            640: {"block": [0, 1, 2, 3, 4], "skip_count": 2},
            560: {"block": [0, 1, 2, 3, 4], "skip_count": 2},
            480: {"block": [0, 1, 2, 3, 4], "skip_count": 2},
            400: {"block": [0, 1, 2, 3, 4], "skip_count": 2},
        },
    ):
        super().__init__(
            steps=steps,
            spatial_broadcast=spatial_broadcast,
            spatial_threshold=spatial_threshold,
            spatial_range=spatial_range,
            temporal_broadcast=temporal_broadcast,
            temporal_threshold=temporal_threshold,
            temporal_range=temporal_range,
            cross_broadcast=cross_broadcast,
            cross_threshold=cross_threshold,
            cross_range=cross_range,
            mlp_broadcast=mlp_broadcast,
            mlp_spatial_broadcast_config=mlp_spatial_broadcast_config,
            mlp_temporal_broadcast_config=mlp_temporal_broadcast_config,
        )


class LatteConfig:
    """
    This config is to instantiate a `LattePipeline` class for video generation.

    To be specific, this config will be passed to engine by `VideoSysEngine(config)`.
    In the engine, it will be used to instantiate the corresponding pipeline class.
    And the engine will call the `generate` function of the pipeline to generate the video.
    If you want to explore the detail of generation, please refer to the pipeline class below.

    Args:
        model_path (str):
            A path to the pretrained pipeline. Defaults to "maxin-cn/Latte-1".
        num_gpus (int):
            The number of GPUs to use. Defaults to 1.
        enable_vae_temporal_decoder (bool):
            Whether to enable VAE Temporal Decoder. Defaults to True.
        beta_start (float):
            The initial value of beta for DDIM. Defaults to 0.0001.
        beta_end (float):
            The final value of beta for DDIM. Defaults to 0.02.
        beta_schedule (str):
            The schedule of beta for DDIM. Defaults to "linear".
        variance_type (str):
            The type of variance for DDIM. Defaults to "learned_range".
        enable_pab (bool):
            Whether to enable Pyramid Attention Broadcast. Defaults to False.
        pab_config (CogVideoXPABConfig):
            The configuration for Pyramid Attention Broadcast. Defaults to `LattePABConfig()`.

    Examples:
        ```python
        from videosys import LatteConfig, VideoSysEngine

        # change num_gpus for multi-gpu inference
        config = LatteConfig("maxin-cn/Latte-1", num_gpus=1)
        engine = VideoSysEngine(config)

        prompt = "Sunset over the sea."
        # video size is fixed to 16 frames, 512x512.
        video = engine.generate(
            prompt=prompt,
            guidance_scale=7.5,
            num_inference_steps=50,
        ).video[0]
        engine.save_video(video, f"./outputs/{prompt}.mp4")
        ```
    """

    def __init__(
        self,
        model_path: str = "maxin-cn/Latte-1",
        # ======= distributed =======
        num_gpus: int = 1,
        # ======= vae ========
        enable_vae_temporal_decoder: bool = True,
        # ======= scheduler ========
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        variance_type: str = "learned_range",
        # ======= pab ========
        enable_pab: bool = False,
        pab_config: PABConfig = LattePABConfig(),
    ):
        self.model_path = model_path
        self.pipeline_cls = LattePipeline
        # ======= distributed =======
        self.num_gpus = num_gpus
        # ======= vae ========
        self.enable_vae_temporal_decoder = enable_vae_temporal_decoder
        # ======= scheduler ========
        self.beta_start = beta_start
        self.beta_end = beta_end
        self.beta_schedule = beta_schedule
        self.variance_type = variance_type
        # ======= pab ========
        self.enable_pab = enable_pab
        self.pab_config = pab_config


class LattePipeline(VideoSysPipeline):
    r"""
    Pipeline for text-to-image generation using PixArt-Alpha.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
        text_encoder ([`T5EncoderModel`]):
            Frozen text-encoder. PixArt-Alpha uses
            [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
            [t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant.
        tokenizer (`T5Tokenizer`):
            Tokenizer of class
            [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
        transformer ([`Transformer2DModel`]):
            A text conditioned `Transformer2DModel` to denoise the encoded image latents.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
    """
    bad_punct_regex = re.compile(
        r"[" + "#®•©™&@·º½¾¿¡§~" + "\)" + "\(" + "\]" + "\[" + "\}" + "\{" + "\|" + "\\" + "\/" + "\*" + r"]{1,}"
    )  # noqa

    _optional_components = ["tokenizer", "text_encoder"]
    model_cpu_offload_seq = "text_encoder->transformer->vae"

    def __init__(
        self,
        config: LatteConfig,
        tokenizer: Optional[T5Tokenizer] = None,
        text_encoder: Optional[T5EncoderModel] = None,
        vae: Optional[AutoencoderKL] = None,
        transformer: Optional[LatteT2V] = None,
        scheduler: Optional[DDIMScheduler] = None,
        device: torch.device = torch.device("cuda"),
        dtype: torch.dtype = torch.float16,
    ):
        super().__init__()
        self._config = config

        # initialize the model if not provided
        if transformer is None:
            transformer = LatteT2V.from_pretrained(config.model_path, subfolder="transformer", video_length=16).to(
                dtype=dtype
            )
        if vae is None:
            if config.enable_vae_temporal_decoder:
                vae = AutoencoderKLTemporalDecoder.from_pretrained(
                    config.model_path, subfolder="vae_temporal_decoder", torch_dtype=dtype
                )
            else:
                vae = AutoencoderKL.from_pretrained(config.model_path, subfolder="vae", torch_dtype=dtype)
        if tokenizer is None:
            tokenizer = T5Tokenizer.from_pretrained(config.model_path, subfolder="tokenizer")
        if text_encoder is None:
            text_encoder = T5EncoderModel.from_pretrained(
                config.model_path, subfolder="text_encoder", torch_dtype=dtype
            )
        if scheduler is None:
            scheduler = DDIMScheduler.from_pretrained(
                config.model_path,
                subfolder="scheduler",
                beta_start=config.beta_start,
                beta_end=config.beta_end,
                beta_schedule=config.beta_schedule,
                variance_type=config.variance_type,
                clip_sample=False,
            )

        # pab
        if config.enable_pab:
            set_pab_manager(config.pab_config)

        # set eval and device
        self.set_eval_and_device(device, text_encoder, vae, transformer)

        self.register_modules(
            tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler
        )

        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)

    # Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/utils.py
    def mask_text_embeddings(self, emb, mask):
        if emb.shape[0] == 1:
            keep_index = mask.sum().item()
            return emb[:, :, :keep_index, :], keep_index  # 1, 120, 4096 -> 1 7 4096
        else:
            masked_feature = emb * mask[:, None, :, None]  # 1 120 4096
            return masked_feature, emb.shape[2]

    # Adapted from diffusers.pipelines.deepfloyd_if.pipeline_if.encode_prompt
    def encode_prompt(
        self,
        prompt: Union[str, List[str]],
        do_classifier_free_guidance: bool = True,
        negative_prompt: str = "",
        num_images_per_prompt: int = 1,
        device: Optional[torch.device] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        clean_caption: bool = False,
        mask_feature: bool = True,
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`
                instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For
                PixArt-Alpha, this should be "".
            do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
                whether to use classifier free guidance or not
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                number of images that should be generated per prompt
            device: (`torch.device`, *optional*):
                torch device to place the resulting embeddings on
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative text embeddings. For PixArt-Alpha, it's should be the embeddings of the ""
                string.
            clean_caption (bool, defaults to `False`):
                If `True`, the function will preprocess and clean the provided caption before encoding.
            mask_feature: (bool, defaults to `True`):
                If `True`, the function will mask the text embeddings.
        """
        embeds_initially_provided = prompt_embeds is not None and negative_prompt_embeds is not None

        if device is None:
            device = self._execution_device

        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        # See Section 3.1. of the paper.
        max_length = 120

        if prompt_embeds is None:
            prompt = self._text_preprocessing(prompt, clean_caption=clean_caption)
            text_inputs = self.tokenizer(
                prompt,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_attention_mask=True,
                add_special_tokens=True,
                return_tensors="pt",
            )
            text_input_ids = text_inputs.input_ids
            untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids

            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
                text_input_ids, untruncated_ids
            ):
                removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1 : -1])
                logger.warning(
                    "The following part of your input was truncated because CLIP can only handle sequences up to"
                    f" {max_length} tokens: {removed_text}"
                )

            attention_mask = text_inputs.attention_mask.to(device)
            prompt_embeds_attention_mask = attention_mask

            prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
            prompt_embeds = prompt_embeds[0]
        else:
            prompt_embeds_attention_mask = torch.ones_like(prompt_embeds)

        if self.text_encoder is not None:
            dtype = self.text_encoder.dtype
        elif self.transformer is not None:
            dtype = self.transformer.dtype
        else:
            dtype = None

        prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)

        bs_embed, seq_len, _ = prompt_embeds.shape
        # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
        prompt_embeds_attention_mask = prompt_embeds_attention_mask.view(bs_embed, -1)
        prompt_embeds_attention_mask = prompt_embeds_attention_mask.repeat(num_images_per_prompt, 1)

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance and negative_prompt_embeds is None:
            uncond_tokens = [negative_prompt] * batch_size
            uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption)
            max_length = prompt_embeds.shape[1]
            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_attention_mask=True,
                add_special_tokens=True,
                return_tensors="pt",
            )
            attention_mask = uncond_input.attention_mask.to(device)

            negative_prompt_embeds = self.text_encoder(
                uncond_input.input_ids.to(device),
                attention_mask=attention_mask,
            )
            negative_prompt_embeds = negative_prompt_embeds[0]

        if do_classifier_free_guidance:
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]

            negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)

            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
        else:
            negative_prompt_embeds = None

        # Perform additional masking.
        if mask_feature and not embeds_initially_provided:
            prompt_embeds = prompt_embeds.unsqueeze(1)
            masked_prompt_embeds, keep_indices = self.mask_text_embeddings(prompt_embeds, prompt_embeds_attention_mask)
            masked_prompt_embeds = masked_prompt_embeds.squeeze(1)
            masked_negative_prompt_embeds = (
                negative_prompt_embeds[:, :keep_indices, :] if negative_prompt_embeds is not None else None
            )

            # import torch.nn.functional as F

            # padding = (0, 0, 0, 113)  # (左, 右, 下, 上)
            # masked_prompt_embeds_ = F.pad(masked_prompt_embeds, padding, "constant", 0)
            # masked_negative_prompt_embeds_ = F.pad(masked_negative_prompt_embeds, padding, "constant", 0)

            # print(masked_prompt_embeds == masked_prompt_embeds_[:, :masked_negative_prompt_embeds.shape[1], ...])

            return masked_prompt_embeds, masked_negative_prompt_embeds
            # return masked_prompt_embeds_, masked_negative_prompt_embeds_

        return prompt_embeds, negative_prompt_embeds

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    def check_inputs(
        self,
        prompt,
        height,
        width,
        negative_prompt,
        callback_steps,
        prompt_embeds=None,
        negative_prompt_embeds=None,
    ):
        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

        if (callback_steps is None) or (
            callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
        ):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )

    # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing
    def _text_preprocessing(self, text, clean_caption=False):
        if not isinstance(text, (tuple, list)):
            text = [text]

        def process(text: str):
            if clean_caption:
                text = self._clean_caption(text)
                text = self._clean_caption(text)
            else:
                text = text.lower().strip()
            return text

        return [process(t) for t in text]

    # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption
    def _clean_caption(self, caption):
        caption = str(caption)
        caption = ul.unquote_plus(caption)
        caption = caption.strip().lower()
        caption = re.sub("<person>", "person", caption)
        # urls:
        caption = re.sub(
            r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))",  # noqa
            "",
            caption,
        )  # regex for urls
        caption = re.sub(
            r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))",  # noqa
            "",
            caption,
        )  # regex for urls
        # html:
        caption = BeautifulSoup(caption, features="html.parser").text

        # @<nickname>
        caption = re.sub(r"@[\w\d]+\b", "", caption)

        # 31C0—31EF CJK Strokes
        # 31F0—31FF Katakana Phonetic Extensions
        # 3200—32FF Enclosed CJK Letters and Months
        # 3300—33FF CJK Compatibility
        # 3400—4DBF CJK Unified Ideographs Extension A
        # 4DC0—4DFF Yijing Hexagram Symbols
        # 4E00—9FFF CJK Unified Ideographs
        caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
        caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
        caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
        caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
        caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
        caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
        caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
        #######################################################

        # все виды тире / all types of dash --> "-"
        caption = re.sub(
            r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+",  # noqa
            "-",
            caption,
        )

        # кавычки к одному стандарту
        caption = re.sub(r"[`´«»“”¨]", '"', caption)
        caption = re.sub(r"[‘’]", "'", caption)

        # &quot;
        caption = re.sub(r"&quot;?", "", caption)
        # &amp
        caption = re.sub(r"&amp", "", caption)

        # ip adresses:
        caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)

        # article ids:
        caption = re.sub(r"\d:\d\d\s+$", "", caption)

        # \n
        caption = re.sub(r"\\n", " ", caption)

        # "#123"
        caption = re.sub(r"#\d{1,3}\b", "", caption)
        # "#12345.."
        caption = re.sub(r"#\d{5,}\b", "", caption)
        # "123456.."
        caption = re.sub(r"\b\d{6,}\b", "", caption)
        # filenames:
        caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption)

        #
        caption = re.sub(r"[\"\']{2,}", r'"', caption)  # """AUSVERKAUFT"""
        caption = re.sub(r"[\.]{2,}", r" ", caption)  # """AUSVERKAUFT"""

        caption = re.sub(self.bad_punct_regex, r" ", caption)  # ***AUSVERKAUFT***, #AUSVERKAUFT
        caption = re.sub(r"\s+\.\s+", r" ", caption)  # " . "

        # this-is-my-cute-cat / this_is_my_cute_cat
        regex2 = re.compile(r"(?:\-|\_)")
        if len(re.findall(regex2, caption)) > 3:
            caption = re.sub(regex2, " ", caption)

        caption = ftfy.fix_text(caption)
        caption = html.unescape(html.unescape(caption))

        caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption)  # jc6640
        caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption)  # jc6640vc
        caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption)  # 6640vc231

        caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
        caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
        caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
        caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption)
        caption = re.sub(r"\bpage\s+\d+\b", "", caption)

        caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption)  # j2d1a2a...

        caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)

        caption = re.sub(r"\b\s+\:\s+", r": ", caption)
        caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
        caption = re.sub(r"\s+", " ", caption)

        caption.strip()

        caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
        caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
        caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
        caption = re.sub(r"^\.\S+$", "", caption)

        return caption.strip()

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
    def prepare_latents(
        self, batch_size, num_channels_latents, video_length, height, width, dtype, device, generator, latents=None
    ):
        shape = (
            batch_size,
            num_channels_latents,
            video_length,
            height // self.vae_scale_factor,
            width // self.vae_scale_factor,
        )
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if latents is None:
            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        else:
            latents = latents.to(device)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        return latents

    @torch.no_grad()
    def generate(
        self,
        prompt: str = None,
        negative_prompt: str = "",
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
        callback_steps: int = 1,
        clean_caption: bool = True,
        mask_feature: bool = True,
        enable_temporal_attentions: bool = True,
        verbose: bool = True,
    ) -> Union[VideoSysPipelineOutput, Tuple]:
        """
        Function invoked when calling the pipeline for generation.

        Latte can only generate video of 16 frames 512x512.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
                instead.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            num_inference_steps (`int`, *optional*, defaults to 100):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            timesteps (`List[int]`, *optional*):
                Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`
                timesteps are used. Must be in descending order.
            guidance_scale (`float`, *optional*, defaults to 7.0):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
            latents (`torch.FloatTensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative text embeddings. For PixArt-Alpha this negative prompt should be "". If not
                provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
            callback (`Callable`, *optional*):
                A function that will be called every `callback_steps` steps during inference. The function will be
                called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function will be called. If not specified, the callback will be
                called at every step.
            clean_caption (`bool`, *optional*, defaults to `True`):
                Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to
                be installed. If the dependencies are not installed, the embeddings will be created from the raw
                prompt.
            mask_feature (`bool` defaults to `True`): If set to `True`, the text embeddings will be masked.
            enable_temporal_attentions (`bool`, defaults to `True`):
                If `True`, the model will use temporal attentions to generate the video.
            verbose (`bool`, *optional*, defaults to `True`):
                Whether to print progress bars and other information during inference.

        Returns:
            [`~pipelines.ImagePipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
                returned where the first element is a list with the generated images
        """
        # 1. Check inputs. Raise error if not correct
        video_length = 16
        height = 512
        width = 512
        update_steps(num_inference_steps)
        self.check_inputs(prompt, height, width, negative_prompt, callback_steps, prompt_embeds, negative_prompt_embeds)

        # 2. Default height and width to transformer
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self.text_encoder.device or self._execution_device

        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0

        # 3. Encode input prompt
        prompt_embeds, negative_prompt_embeds = self.encode_prompt(
            prompt,
            do_classifier_free_guidance,
            negative_prompt=negative_prompt,
            num_images_per_prompt=num_images_per_prompt,
            device=device,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            clean_caption=clean_caption,
            mask_feature=mask_feature,
        )
        if do_classifier_free_guidance:
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)

        # 4. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps

        # 5. Prepare latents.
        latent_channels = self.transformer.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            latent_channels,
            video_length,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
        )

        # 6. Prepare extra step kwargs.
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 6.1 Prepare micro-conditions.
        added_cond_kwargs = {"resolution": None, "aspect_ratio": None}
        if self.transformer.config.sample_size == 128:
            resolution = torch.tensor([height, width]).repeat(batch_size * num_images_per_prompt, 1)
            aspect_ratio = torch.tensor([float(height / width)]).repeat(batch_size * num_images_per_prompt, 1)
            resolution = resolution.to(dtype=prompt_embeds.dtype, device=device)
            aspect_ratio = aspect_ratio.to(dtype=prompt_embeds.dtype, device=device)
            added_cond_kwargs = {"resolution": resolution, "aspect_ratio": aspect_ratio}

        # 7. Denoising loop
        num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)

        progress_wrap = tqdm.tqdm if verbose and dist.get_rank() == 0 else (lambda x: x)
        for i, t in progress_wrap(list(enumerate(timesteps))):
            latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
            latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

            current_timestep = t
            if not torch.is_tensor(current_timestep):
                # This would be a good case for the `match` statement (Python 3.10+)
                is_mps = latent_model_input.device.type == "mps"
                if isinstance(current_timestep, float):
                    dtype = torch.float32 if is_mps else torch.float64
                else:
                    dtype = torch.int32 if is_mps else torch.int64
                current_timestep = torch.tensor([current_timestep], dtype=dtype, device=latent_model_input.device)
            elif len(current_timestep.shape) == 0:
                current_timestep = current_timestep[None].to(latent_model_input.device)
            # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
            current_timestep = current_timestep.expand(latent_model_input.shape[0])

            # predict noise model_output
            noise_pred = self.transformer(
                latent_model_input,
                all_timesteps=timesteps,
                encoder_hidden_states=prompt_embeds,
                timestep=current_timestep,
                added_cond_kwargs=added_cond_kwargs,
                enable_temporal_attentions=enable_temporal_attentions,
                return_dict=False,
            )[0]

            # perform guidance
            if do_classifier_free_guidance:
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

            # learned sigma
            if self.transformer.config.out_channels // 2 == latent_channels:
                noise_pred = noise_pred.chunk(2, dim=1)[0]
            else:
                noise_pred = noise_pred

            # compute previous image: x_t -> x_t-1
            latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]

            # call the callback, if provided
            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                if callback is not None and i % callback_steps == 0:
                    step_idx = i // getattr(self.scheduler, "order", 1)
                    callback(step_idx, t, latents)

        if not output_type == "latents":
            if latents.shape[2] == 1:  # image
                video = self.decode_latents_image(latents)
            else:  # video
                if self._config.enable_vae_temporal_decoder:
                    video = self.decode_latents_with_temporal_decoder(latents)
                else:
                    video = self.decode_latents(latents)
        else:
            video = latents
            return VideoSysPipelineOutput(video=video)

        # Offload all models
        self.maybe_free_model_hooks()

        if not return_dict:
            return (video,)

        return VideoSysPipelineOutput(video=video)

    def decode_latents_image(self, latents):
        video_length = latents.shape[2]
        latents = 1 / self.vae.config.scaling_factor * latents
        latents = einops.rearrange(latents, "b c f h w -> (b f) c h w")
        video = []
        for frame_idx in range(latents.shape[0]):
            video.append(self.vae.decode(latents[frame_idx : frame_idx + 1]).sample)
        video = torch.cat(video)
        video = einops.rearrange(video, "(b f) c h w -> b f c h w", f=video_length)
        video = (video / 2.0 + 0.5).clamp(0, 1)
        return video

    def decode_latents(self, latents):
        video_length = latents.shape[2]
        latents = 1 / self.vae.config.scaling_factor * latents
        latents = einops.rearrange(latents, "b c f h w -> (b f) c h w")
        video = []
        for frame_idx in range(latents.shape[0]):
            video.append(self.vae.decode(latents[frame_idx : frame_idx + 1]).sample)
        video = torch.cat(video)
        video = einops.rearrange(video, "(b f) c h w -> b f h w c", f=video_length)
        video = ((video / 2.0 + 0.5).clamp(0, 1) * 255).to(dtype=torch.uint8).cpu().contiguous()
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
        return video

    def decode_latents_with_temporal_decoder(self, latents):
        video_length = latents.shape[2]
        latents = 1 / self.vae.config.scaling_factor * latents
        latents = einops.rearrange(latents, "b c f h w -> (b f) c h w")
        video = []

        decode_chunk_size = 14
        for frame_idx in range(0, latents.shape[0], decode_chunk_size):
            num_frames_in = latents[frame_idx : frame_idx + decode_chunk_size].shape[0]

            decode_kwargs = {}
            decode_kwargs["num_frames"] = num_frames_in

            video.append(self.vae.decode(latents[frame_idx : frame_idx + decode_chunk_size], **decode_kwargs).sample)

        video = torch.cat(video)
        video = einops.rearrange(video, "(b f) c h w -> b f h w c", f=video_length)
        video = ((video / 2.0 + 0.5).clamp(0, 1) * 255).to(dtype=torch.uint8).cpu().contiguous()
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
        return video

    def save_video(self, video, output_path):
        save_video(video, output_path, fps=8)