# Adapted from: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py import html import inspect import math import re import urllib.parse as ul from typing import Callable, Dict, List, Optional, Tuple, Union import torch import torch.nn.functional as F from contextlib import nullcontext from diffusers.image_processor import VaeImageProcessor from diffusers.models import AutoencoderKL from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DPMSolverMultistepScheduler from diffusers.utils import ( BACKENDS_MAPPING, deprecate, is_bs4_available, is_ftfy_available, logging, ) from diffusers.utils.torch_utils import randn_tensor from einops import rearrange from transformers import T5EncoderModel, T5Tokenizer from xora.models.transformers.transformer3d import Transformer3DModel from xora.models.transformers.symmetric_patchifier import Patchifier from xora.models.autoencoders.vae_encode import ( get_vae_size_scale_factor, vae_decode, vae_encode, ) from xora.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder from xora.schedulers.rf import TimestepShifter from xora.utils.conditioning_method import ConditioningMethod logger = logging.get_logger(__name__) # pylint: disable=invalid-name if is_bs4_available(): from bs4 import BeautifulSoup if is_ftfy_available(): import ftfy ASPECT_RATIO_1024_BIN = { "0.25": [512.0, 2048.0], "0.28": [512.0, 1856.0], "0.32": [576.0, 1792.0], "0.33": [576.0, 1728.0], "0.35": [576.0, 1664.0], "0.4": [640.0, 1600.0], "0.42": [640.0, 1536.0], "0.48": [704.0, 1472.0], "0.5": [704.0, 1408.0], "0.52": [704.0, 1344.0], "0.57": [768.0, 1344.0], "0.6": [768.0, 1280.0], "0.68": [832.0, 1216.0], "0.72": [832.0, 1152.0], "0.78": [896.0, 1152.0], "0.82": [896.0, 1088.0], "0.88": [960.0, 1088.0], "0.94": [960.0, 1024.0], "1.0": [1024.0, 1024.0], "1.07": [1024.0, 960.0], "1.13": [1088.0, 960.0], "1.21": [1088.0, 896.0], "1.29": [1152.0, 896.0], "1.38": [1152.0, 832.0], "1.46": [1216.0, 832.0], "1.67": [1280.0, 768.0], "1.75": [1344.0, 768.0], "2.0": [1408.0, 704.0], "2.09": [1472.0, 704.0], "2.4": [1536.0, 640.0], "2.5": [1600.0, 640.0], "3.0": [1728.0, 576.0], "4.0": [2048.0, 512.0], } ASPECT_RATIO_512_BIN = { "0.25": [256.0, 1024.0], "0.28": [256.0, 928.0], "0.32": [288.0, 896.0], "0.33": [288.0, 864.0], "0.35": [288.0, 832.0], "0.4": [320.0, 800.0], "0.42": [320.0, 768.0], "0.48": [352.0, 736.0], "0.5": [352.0, 704.0], "0.52": [352.0, 672.0], "0.57": [384.0, 672.0], "0.6": [384.0, 640.0], "0.68": [416.0, 608.0], "0.72": [416.0, 576.0], "0.78": [448.0, 576.0], "0.82": [448.0, 544.0], "0.88": [480.0, 544.0], "0.94": [480.0, 512.0], "1.0": [512.0, 512.0], "1.07": [512.0, 480.0], "1.13": [544.0, 480.0], "1.21": [544.0, 448.0], "1.29": [576.0, 448.0], "1.38": [576.0, 416.0], "1.46": [608.0, 416.0], "1.67": [640.0, 384.0], "1.75": [672.0, 384.0], "2.0": [704.0, 352.0], "2.09": [736.0, 352.0], "2.4": [768.0, 320.0], "2.5": [800.0, 320.0], "3.0": [864.0, 288.0], "4.0": [1024.0, 256.0], } # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps def retrieve_timesteps( scheduler, num_inference_steps: Optional[int] = None, device: Optional[Union[str, torch.device]] = None, timesteps: Optional[List[int]] = None, **kwargs, ): """ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. Args: scheduler (`SchedulerMixin`): The scheduler to get timesteps from. num_inference_steps (`int`): The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` must be `None`. device (`str` or `torch.device`, *optional*): The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. timesteps (`List[int]`, *optional*): Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps` must be `None`. Returns: `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the second element is the number of inference steps. """ if timesteps is not None: accepts_timesteps = "timesteps" in set( inspect.signature(scheduler.set_timesteps).parameters.keys() ) if not accepts_timesteps: raise ValueError( f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" f" timestep schedules. Please check whether you are using the correct scheduler." ) scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) timesteps = scheduler.timesteps num_inference_steps = len(timesteps) else: scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) timesteps = scheduler.timesteps return timesteps, num_inference_steps class XoraVideoPipeline(DiffusionPipeline): r""" Pipeline for text-to-image generation using Xora. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`T5EncoderModel`]): Frozen text-encoder. This uses [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the [t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant. tokenizer (`T5Tokenizer`): Tokenizer of class [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer). transformer ([`Transformer2DModel`]): A text conditioned `Transformer2DModel` to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `transformer` to denoise the encoded image latents. """ bad_punct_regex = re.compile( r"[" + "#®•©™&@·º½¾¿¡§~" + r"\)" + r"\(" + r"\]" + r"\[" + r"\}" + r"\{" + r"\|" + "\\" + r"\/" + r"\*" + r"]{1,}" ) # noqa _optional_components = ["tokenizer", "text_encoder"] model_cpu_offload_seq = "text_encoder->transformer->vae" def __init__( self, tokenizer: T5Tokenizer, text_encoder: T5EncoderModel, vae: AutoencoderKL, transformer: Transformer3DModel, scheduler: DPMSolverMultistepScheduler, patchifier: Patchifier, ): super().__init__() self.register_modules( tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler, patchifier=patchifier, ) self.video_scale_factor, self.vae_scale_factor, _ = get_vae_size_scale_factor( self.vae ) self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) def mask_text_embeddings(self, emb, mask): if emb.shape[0] == 1: keep_index = mask.sum().item() return emb[:, :, :keep_index, :], keep_index else: masked_feature = emb * mask[:, None, :, None] return masked_feature, emb.shape[2] # Adapted from diffusers.pipelines.deepfloyd_if.pipeline_if.encode_prompt def encode_prompt( self, prompt: Union[str, List[str]], do_classifier_free_guidance: bool = True, negative_prompt: str = "", num_images_per_prompt: int = 1, device: Optional[torch.device] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, prompt_attention_mask: Optional[torch.FloatTensor] = None, negative_prompt_attention_mask: Optional[torch.FloatTensor] = None, clean_caption: bool = False, **kwargs, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded negative_prompt (`str` or `List[str]`, *optional*): The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For This should be "". do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): whether to use classifier free guidance or not num_images_per_prompt (`int`, *optional*, defaults to 1): number of images that should be generated per prompt device: (`torch.device`, *optional*): torch device to place the resulting embeddings on prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. clean_caption (bool, defaults to `False`): If `True`, the function will preprocess and clean the provided caption before encoding. """ if "mask_feature" in kwargs: deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version." deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False) if device is None: device = self._execution_device if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] # See Section 3.1. of the paper. # FIXME: to be configured in config not hardecoded. Fix in separate PR with rest of config max_length = 128 # TPU supports only lengths multiple of 128 if prompt_embeds is None: prompt = self._text_preprocessing(prompt, clean_caption=clean_caption) text_inputs = self.tokenizer( prompt, padding="max_length", max_length=max_length, truncation=True, add_special_tokens=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer( prompt, padding="longest", return_tensors="pt" ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[ -1 ] and not torch.equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {max_length} tokens: {removed_text}" ) prompt_attention_mask = text_inputs.attention_mask prompt_attention_mask = prompt_attention_mask.to(device) prompt_embeds = self.text_encoder( text_input_ids.to(device), attention_mask=prompt_attention_mask ) prompt_embeds = prompt_embeds[0] if self.text_encoder is not None: dtype = self.text_encoder.dtype elif self.transformer is not None: dtype = self.transformer.dtype else: dtype = None prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view( bs_embed * num_images_per_prompt, seq_len, -1 ) prompt_attention_mask = prompt_attention_mask.repeat(1, num_images_per_prompt) prompt_attention_mask = prompt_attention_mask.view( bs_embed * num_images_per_prompt, -1 ) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens = [negative_prompt] * batch_size uncond_tokens = self._text_preprocessing( uncond_tokens, clean_caption=clean_caption ) max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_attention_mask=True, add_special_tokens=True, return_tensors="pt", ) negative_prompt_attention_mask = uncond_input.attention_mask negative_prompt_attention_mask = negative_prompt_attention_mask.to(device) negative_prompt_embeds = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=negative_prompt_attention_mask, ) negative_prompt_embeds = negative_prompt_embeds[0] if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to( dtype=dtype, device=device ) negative_prompt_embeds = negative_prompt_embeds.repeat( 1, num_images_per_prompt, 1 ) negative_prompt_embeds = negative_prompt_embeds.view( batch_size * num_images_per_prompt, seq_len, -1 ) negative_prompt_attention_mask = negative_prompt_attention_mask.repeat( 1, num_images_per_prompt ) negative_prompt_attention_mask = negative_prompt_attention_mask.view( bs_embed * num_images_per_prompt, -1 ) else: negative_prompt_embeds = None negative_prompt_attention_mask = None return ( prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask, ) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set( inspect.signature(self.scheduler.step).parameters.keys() ) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set( inspect.signature(self.scheduler.step).parameters.keys() ) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def check_inputs( self, prompt, height, width, negative_prompt, prompt_embeds=None, negative_prompt_embeds=None, prompt_attention_mask=None, negative_prompt_attention_mask=None, ): if height % 8 != 0 or width % 8 != 0: raise ValueError( f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and ( not isinstance(prompt, str) and not isinstance(prompt, list) ): raise ValueError( f"`prompt` has to be of type `str` or `list` but is {type(prompt)}" ) if prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and prompt_attention_mask is None: raise ValueError( "Must provide `prompt_attention_mask` when specifying `prompt_embeds`." ) if ( negative_prompt_embeds is not None and negative_prompt_attention_mask is None ): raise ValueError( "Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if prompt_attention_mask.shape != negative_prompt_attention_mask.shape: raise ValueError( "`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but" f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`" f" {negative_prompt_attention_mask.shape}." ) # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing def _text_preprocessing(self, text, clean_caption=False): if clean_caption and not is_bs4_available(): logger.warn( BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`") ) logger.warn("Setting `clean_caption` to False...") clean_caption = False if clean_caption and not is_ftfy_available(): logger.warn( BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`") ) logger.warn("Setting `clean_caption` to False...") clean_caption = False if not isinstance(text, (tuple, list)): text = [text] def process(text: str): if clean_caption: text = self._clean_caption(text) text = self._clean_caption(text) else: text = text.lower().strip() return text return [process(t) for t in text] # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption def _clean_caption(self, caption): caption = str(caption) caption = ul.unquote_plus(caption) caption = caption.strip().lower() caption = re.sub("", "person", caption) # urls: caption = re.sub( r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa "", caption, ) # regex for urls caption = re.sub( r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa "", caption, ) # regex for urls # html: caption = BeautifulSoup(caption, features="html.parser").text # @ caption = re.sub(r"@[\w\d]+\b", "", caption) # 31C0—31EF CJK Strokes # 31F0—31FF Katakana Phonetic Extensions # 3200—32FF Enclosed CJK Letters and Months # 3300—33FF CJK Compatibility # 3400—4DBF CJK Unified Ideographs Extension A # 4DC0—4DFF Yijing Hexagram Symbols # 4E00—9FFF CJK Unified Ideographs caption = re.sub(r"[\u31c0-\u31ef]+", "", caption) caption = re.sub(r"[\u31f0-\u31ff]+", "", caption) caption = re.sub(r"[\u3200-\u32ff]+", "", caption) caption = re.sub(r"[\u3300-\u33ff]+", "", caption) caption = re.sub(r"[\u3400-\u4dbf]+", "", caption) caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption) caption = re.sub(r"[\u4e00-\u9fff]+", "", caption) ####################################################### # все виды тире / all types of dash --> "-" caption = re.sub( r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa "-", caption, ) # кавычки к одному стандарту caption = re.sub(r"[`´«»“”¨]", '"', caption) caption = re.sub(r"[‘’]", "'", caption) # " caption = re.sub(r""?", "", caption) # & caption = re.sub(r"&", "", caption) # ip adresses: caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption) # article ids: caption = re.sub(r"\d:\d\d\s+$", "", caption) # \n caption = re.sub(r"\\n", " ", caption) # "#123" caption = re.sub(r"#\d{1,3}\b", "", caption) # "#12345.." caption = re.sub(r"#\d{5,}\b", "", caption) # "123456.." caption = re.sub(r"\b\d{6,}\b", "", caption) # filenames: caption = re.sub( r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption ) # caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT""" caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT""" caption = re.sub( self.bad_punct_regex, r" ", caption ) # ***AUSVERKAUFT***, #AUSVERKAUFT caption = re.sub(r"\s+\.\s+", r" ", caption) # " . " # this-is-my-cute-cat / this_is_my_cute_cat regex2 = re.compile(r"(?:\-|\_)") if len(re.findall(regex2, caption)) > 3: caption = re.sub(regex2, " ", caption) caption = ftfy.fix_text(caption) caption = html.unescape(html.unescape(caption)) caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640 caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231 caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption) caption = re.sub(r"(free\s)?download(\sfree)?", "", caption) caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption) caption = re.sub( r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption ) caption = re.sub(r"\bpage\s+\d+\b", "", caption) caption = re.sub( r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption ) # j2d1a2a... caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption) caption = re.sub(r"\b\s+\:\s+", r": ", caption) caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption) caption = re.sub(r"\s+", " ", caption) caption.strip() caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption) caption = re.sub(r"^[\'\_,\-\:;]", r"", caption) caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption) caption = re.sub(r"^\.\S+$", "", caption) return caption.strip() # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents def prepare_latents( self, batch_size, num_latent_channels, num_patches, dtype, device, generator, latents=None, latents_mask=None, ): shape = ( batch_size, num_patches // math.prod(self.patchifier.patch_size), num_latent_channels, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor( shape, generator=generator, device=device, dtype=dtype ) elif latents_mask is not None: noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) latents = latents * latents_mask[..., None] + noise * ( 1 - latents_mask[..., None] ) else: latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents @staticmethod def classify_height_width_bin( height: int, width: int, ratios: dict ) -> Tuple[int, int]: """Returns binned height and width.""" ar = float(height / width) closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - ar)) default_hw = ratios[closest_ratio] return int(default_hw[0]), int(default_hw[1]) @staticmethod def resize_and_crop_tensor( samples: torch.Tensor, new_width: int, new_height: int ) -> torch.Tensor: n_frames, orig_height, orig_width = samples.shape[-3:] # Check if resizing is needed if orig_height != new_height or orig_width != new_width: ratio = max(new_height / orig_height, new_width / orig_width) resized_width = int(orig_width * ratio) resized_height = int(orig_height * ratio) # Resize samples = rearrange(samples, "b c n h w -> (b n) c h w") samples = F.interpolate( samples, size=(resized_height, resized_width), mode="bilinear", align_corners=False, ) samples = rearrange(samples, "(b n) c h w -> b c n h w", n=n_frames) # Center Crop start_x = (resized_width - new_width) // 2 end_x = start_x + new_width start_y = (resized_height - new_height) // 2 end_y = start_y + new_height samples = samples[..., start_y:end_y, start_x:end_x] return samples @torch.no_grad() def __call__( self, height: int, width: int, num_frames: int, frame_rate: float, prompt: Union[str, List[str]] = None, negative_prompt: str = "", num_inference_steps: int = 20, timesteps: List[int] = None, guidance_scale: float = 4.5, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, prompt_attention_mask: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_attention_mask: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, clean_caption: bool = True, media_items: Optional[torch.FloatTensor] = None, mixed_precision: bool = False, **kwargs, ) -> Union[ImagePipelineOutput, Tuple]: """ Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). num_inference_steps (`int`, *optional*, defaults to 100): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. timesteps (`List[int]`, *optional*): Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps` timesteps are used. Must be in descending order. guidance_scale (`float`, *optional*, defaults to 4.5): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. height (`int`, *optional*, defaults to self.unet.config.sample_size): The height in pixels of the generated image. width (`int`, *optional*, defaults to self.unet.config.sample_size): The width in pixels of the generated image. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. prompt_attention_mask (`torch.FloatTensor`, *optional*): Pre-generated attention mask for text embeddings. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. This negative prompt should be "". If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. negative_prompt_attention_mask (`torch.FloatTensor`, *optional*): Pre-generated attention mask for negative text embeddings. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple. callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. clean_caption (`bool`, *optional*, defaults to `True`): Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to be installed. If the dependencies are not installed, the embeddings will be created from the raw prompt. use_resolution_binning (`bool` defaults to `True`): If set to `True`, the requested height and width are first mapped to the closest resolutions using `ASPECT_RATIO_1024_BIN`. After the produced latents are decoded into images, they are resized back to the requested resolution. Useful for generating non-square images. Examples: Returns: [`~pipelines.ImagePipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images """ if "mask_feature" in kwargs: deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version." deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False) is_video = kwargs.get("is_video", False) self.check_inputs( prompt, height, width, negative_prompt, prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask, ) # 2. Default height and width to transformer if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompt ( prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask, ) = self.encode_prompt( prompt, do_classifier_free_guidance, negative_prompt=negative_prompt, num_images_per_prompt=num_images_per_prompt, device=device, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, prompt_attention_mask=prompt_attention_mask, negative_prompt_attention_mask=negative_prompt_attention_mask, clean_caption=clean_caption, ) if do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) prompt_attention_mask = torch.cat( [negative_prompt_attention_mask, prompt_attention_mask], dim=0 ) # 3b. Encode and prepare conditioning data self.video_scale_factor = self.video_scale_factor if is_video else 1 conditioning_method = kwargs.get("conditioning_method", None) vae_per_channel_normalize = kwargs.get("vae_per_channel_normalize", False) init_latents, conditioning_mask = self.prepare_conditioning( media_items, num_frames, height, width, conditioning_method, vae_per_channel_normalize, ) # 4. Prepare latents. latent_height = height // self.vae_scale_factor latent_width = width // self.vae_scale_factor latent_num_frames = num_frames // self.video_scale_factor if isinstance(self.vae, CausalVideoAutoencoder) and is_video: latent_num_frames += 1 latent_frame_rate = frame_rate / self.video_scale_factor num_latent_patches = latent_height * latent_width * latent_num_frames latents = self.prepare_latents( batch_size=batch_size * num_images_per_prompt, num_latent_channels=self.transformer.config.in_channels, num_patches=num_latent_patches, dtype=prompt_embeds.dtype, device=device, generator=generator, latents=init_latents, latents_mask=conditioning_mask, ) if conditioning_mask is not None and is_video: assert num_images_per_prompt == 1 conditioning_mask = ( torch.cat([conditioning_mask] * 2) if do_classifier_free_guidance else conditioning_mask ) # 5. Prepare timesteps retrieve_timesteps_kwargs = {} if isinstance(self.scheduler, TimestepShifter): retrieve_timesteps_kwargs["samples"] = latents timesteps, num_inference_steps = retrieve_timesteps( self.scheduler, num_inference_steps, device, timesteps, **retrieve_timesteps_kwargs, ) # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 7. Denoising loop num_warmup_steps = max( len(timesteps) - num_inference_steps * self.scheduler.order, 0 ) with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): latent_model_input = ( torch.cat([latents] * 2) if do_classifier_free_guidance else latents ) latent_model_input = self.scheduler.scale_model_input( latent_model_input, t ) latent_frame_rates = ( torch.ones( latent_model_input.shape[0], 1, device=latent_model_input.device ) * latent_frame_rate ) current_timestep = t if not torch.is_tensor(current_timestep): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) is_mps = latent_model_input.device.type == "mps" if isinstance(current_timestep, float): dtype = torch.float32 if is_mps else torch.float64 else: dtype = torch.int32 if is_mps else torch.int64 current_timestep = torch.tensor( [current_timestep], dtype=dtype, device=latent_model_input.device, ) elif len(current_timestep.shape) == 0: current_timestep = current_timestep[None].to( latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML current_timestep = current_timestep.expand( latent_model_input.shape[0] ).unsqueeze(-1) scale_grid = ( ( 1 / latent_frame_rates, self.vae_scale_factor, self.vae_scale_factor, ) if self.transformer.use_rope else None ) indices_grid = self.patchifier.get_grid( orig_num_frames=latent_num_frames, orig_height=latent_height, orig_width=latent_width, batch_size=latent_model_input.shape[0], scale_grid=scale_grid, device=latents.device, ) if conditioning_mask is not None: current_timestep = current_timestep * (1 - conditioning_mask) # Choose the appropriate context manager based on `mixed_precision` if mixed_precision: if "xla" in device.type: raise NotImplementedError( "Mixed precision is not supported yet on XLA devices." ) context_manager = torch.autocast(device.type, dtype=torch.bfloat16) else: context_manager = nullcontext() # Dummy context manager # predict noise model_output with context_manager: noise_pred = self.transformer( latent_model_input.to(self.transformer.dtype), indices_grid, encoder_hidden_states=prompt_embeds.to(self.transformer.dtype), encoder_attention_mask=prompt_attention_mask, timestep=current_timestep, return_dict=False, )[0] # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * ( noise_pred_text - noise_pred_uncond ) current_timestep, _ = current_timestep.chunk(2) # learned sigma if ( self.transformer.config.out_channels // 2 == self.transformer.config.in_channels ): noise_pred = noise_pred.chunk(2, dim=1)[0] # compute previous image: x_t -> x_t-1 latents = self.scheduler.step( noise_pred, t if current_timestep is None else current_timestep, latents, **extra_step_kwargs, return_dict=False, )[0] # call the callback, if provided if i == len(timesteps) - 1 or ( (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 ): progress_bar.update() if callback_on_step_end is not None: callback_on_step_end(self, i, t, {}) latents = self.patchifier.unpatchify( latents=latents, output_height=latent_height, output_width=latent_width, output_num_frames=latent_num_frames, out_channels=self.transformer.in_channels // math.prod(self.patchifier.patch_size), ) if output_type != "latent": image = vae_decode( latents, self.vae, is_video, vae_per_channel_normalize=kwargs["vae_per_channel_normalize"], ) image = self.image_processor.postprocess(image, output_type=output_type) else: image = latents # Offload all models self.maybe_free_model_hooks() if not return_dict: return (image,) return ImagePipelineOutput(images=image) def prepare_conditioning( self, media_items: torch.Tensor, num_frames: int, height: int, width: int, method: ConditioningMethod = ConditioningMethod.UNCONDITIONAL, vae_per_channel_normalize: bool = False, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Prepare the conditioning data for the video generation. If an input media item is provided, encode it and set the conditioning_mask to indicate which tokens to condition on. Input media item should have the same height and width as the generated video. Args: media_items (torch.Tensor): media items to condition on (images or videos) num_frames (int): number of frames to generate height (int): height of the generated video width (int): width of the generated video method (ConditioningMethod, optional): conditioning method to use. Defaults to ConditioningMethod.UNCONDITIONAL. vae_per_channel_normalize (bool, optional): whether to normalize the input to the VAE per channel. Defaults to False. Returns: Tuple[torch.Tensor, torch.Tensor]: the conditioning latents and the conditioning mask """ if media_items is None or method == ConditioningMethod.UNCONDITIONAL: return None, None assert media_items.ndim == 5 assert height == media_items.shape[-2] and width == media_items.shape[-1] # Encode the input video and repeat to the required number of frame-tokens init_latents = vae_encode( media_items.to(dtype=self.vae.dtype, device=self.vae.device), self.vae, vae_per_channel_normalize=vae_per_channel_normalize, ).float() init_len, target_len = ( init_latents.shape[2], num_frames // self.video_scale_factor, ) if isinstance(self.vae, CausalVideoAutoencoder): target_len += 1 init_latents = init_latents[:, :, :target_len] if target_len > init_len: repeat_factor = (target_len + init_len - 1) // init_len # Ceiling division init_latents = init_latents.repeat(1, 1, repeat_factor, 1, 1)[ :, :, :target_len ] # Prepare the conditioning mask (1.0 = condition on this token) b, n, f, h, w = init_latents.shape conditioning_mask = torch.zeros([b, 1, f, h, w], device=init_latents.device) if method in [ ConditioningMethod.FIRST_FRAME, ConditioningMethod.FIRST_AND_LAST_FRAME, ]: conditioning_mask[:, :, 0] = 1.0 if method in [ ConditioningMethod.LAST_FRAME, ConditioningMethod.FIRST_AND_LAST_FRAME, ]: conditioning_mask[:, :, -1] = 1.0 # Patchify the init latents and the mask conditioning_mask = self.patchifier.patchify(conditioning_mask).squeeze(-1) init_latents = self.patchifier.patchify(latents=init_latents) return init_latents, conditioning_mask