Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -21,15 +21,12 @@ from PIL import Image
|
|
21 |
import tempfile
|
22 |
import os
|
23 |
import gc
|
24 |
-
from openai import OpenAI
|
25 |
import csv
|
26 |
from datetime import datetime
|
27 |
|
28 |
-
|
29 |
# Load Hugging Face token if needed
|
30 |
hf_token = os.getenv("HF_TOKEN")
|
31 |
-
|
32 |
-
client = OpenAI(api_key=openai_api_key)
|
33 |
system_prompt_t2v_path = "assets/system_prompt_t2v.txt"
|
34 |
system_prompt_i2v_path = "assets/system_prompt_i2v.txt"
|
35 |
with open(system_prompt_t2v_path, "r") as f:
|
@@ -48,7 +45,7 @@ vae_dir = Path(model_path) / "vae"
|
|
48 |
unet_dir = Path(model_path) / "unet"
|
49 |
scheduler_dir = Path(model_path) / "scheduler"
|
50 |
|
51 |
-
device = torch.device("cuda"
|
52 |
|
53 |
DATA_DIR = "/data"
|
54 |
os.makedirs(DATA_DIR, exist_ok=True)
|
@@ -57,7 +54,6 @@ LOG_FILE_PATH = os.path.join("/data", "user_requests.csv")
|
|
57 |
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32", cache_dir=model_path)
|
58 |
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32", cache_dir=model_path)
|
59 |
|
60 |
-
|
61 |
if not os.path.exists(LOG_FILE_PATH):
|
62 |
with open(LOG_FILE_PATH, "w", newline="") as f:
|
63 |
writer = csv.writer(f)
|
@@ -80,7 +76,6 @@ if not os.path.exists(LOG_FILE_PATH):
|
|
80 |
]
|
81 |
)
|
82 |
|
83 |
-
|
84 |
@lru_cache(maxsize=128)
|
85 |
def log_request(
|
86 |
request_type,
|
@@ -123,7 +118,6 @@ def log_request(
|
|
123 |
except Exception as e:
|
124 |
print(f"Error logging request: {e}")
|
125 |
|
126 |
-
|
127 |
def compute_clip_embedding(text=None, image=None):
|
128 |
"""
|
129 |
Compute CLIP embedding for a given text or image.
|
@@ -138,7 +132,6 @@ def compute_clip_embedding(text=None, image=None):
|
|
138 |
embedding = outputs.detach().cpu().numpy().flatten().tolist()
|
139 |
return embedding
|
140 |
|
141 |
-
|
142 |
def load_vae(vae_dir):
|
143 |
vae_ckpt_path = vae_dir / "vae_diffusion_pytorch_model.safetensors"
|
144 |
vae_config_path = vae_dir / "config.json"
|
@@ -149,7 +142,6 @@ def load_vae(vae_dir):
|
|
149 |
vae.load_state_dict(vae_state_dict)
|
150 |
return vae.to(device=device, dtype=torch.bfloat16)
|
151 |
|
152 |
-
|
153 |
def load_unet(unet_dir):
|
154 |
unet_ckpt_path = unet_dir / "unet_diffusion_pytorch_model.safetensors"
|
155 |
unet_config_path = unet_dir / "config.json"
|
@@ -159,13 +151,11 @@ def load_unet(unet_dir):
|
|
159 |
transformer.load_state_dict(unet_state_dict, strict=True)
|
160 |
return transformer.to(device=device, dtype=torch.bfloat16)
|
161 |
|
162 |
-
|
163 |
def load_scheduler(scheduler_dir):
|
164 |
scheduler_config_path = scheduler_dir / "scheduler_config.json"
|
165 |
scheduler_config = RectifiedFlowScheduler.load_config(scheduler_config_path)
|
166 |
return RectifiedFlowScheduler.from_config(scheduler_config)
|
167 |
|
168 |
-
|
169 |
# Helper function for image processing
|
170 |
def center_crop_and_resize(frame, target_height, target_width):
|
171 |
h, w, _ = frame.shape
|
@@ -182,7 +172,6 @@ def center_crop_and_resize(frame, target_height, target_width):
|
|
182 |
frame_resized = cv2.resize(frame_cropped, (target_width, target_height))
|
183 |
return frame_resized
|
184 |
|
185 |
-
|
186 |
def load_image_to_tensor_with_resize(image_path, target_height=512, target_width=768):
|
187 |
image = Image.open(image_path).convert("RGB")
|
188 |
image_np = np.array(image)
|
@@ -191,7 +180,6 @@ def load_image_to_tensor_with_resize(image_path, target_height=512, target_width
|
|
191 |
frame_tensor = (frame_tensor / 127.5) - 1.0
|
192 |
return frame_tensor.unsqueeze(0).unsqueeze(2)
|
193 |
|
194 |
-
|
195 |
def enhance_prompt_if_enabled(prompt, enhance_toggle, type="t2v"):
|
196 |
if not enhance_toggle:
|
197 |
print("Enhance toggle is off, Prompt: ", prompt)
|
@@ -215,7 +203,6 @@ def enhance_prompt_if_enabled(prompt, enhance_toggle, type="t2v"):
|
|
215 |
print(f"Error: {e}")
|
216 |
return prompt
|
217 |
|
218 |
-
|
219 |
# Preset options for resolution and frame configuration
|
220 |
preset_options = [
|
221 |
{"label": "1216x704, 41 frames", "width": 1216, "height": 704, "num_frames": 41},
|
@@ -247,7 +234,6 @@ preset_options = [
|
|
247 |
{"label": "512x320, 257 frames", "width": 512, "height": 320, "num_frames": 257},
|
248 |
]
|
249 |
|
250 |
-
|
251 |
# Function to toggle visibility of sliders based on preset selection
|
252 |
def preset_changed(preset):
|
253 |
if preset != "Custom":
|
@@ -270,7 +256,6 @@ def preset_changed(preset):
|
|
270 |
gr.update(visible=True),
|
271 |
)
|
272 |
|
273 |
-
|
274 |
# Load models
|
275 |
vae = load_vae(vae_dir)
|
276 |
unet = load_unet(unet_dir)
|
@@ -288,7 +273,6 @@ pipeline = XoraVideoPipeline(
|
|
288 |
vae=vae,
|
289 |
).to(device)
|
290 |
|
291 |
-
|
292 |
def generate_video_from_text(
|
293 |
prompt="",
|
294 |
enhance_prompt_toggle=False,
|
@@ -490,7 +474,6 @@ def generate_video_from_image(
|
|
490 |
|
491 |
return output_path
|
492 |
|
493 |
-
|
494 |
def create_advanced_options():
|
495 |
with gr.Accordion("Step 4: Advanced Options (Optional)", open=False):
|
496 |
seed = gr.Slider(label="4.1 Seed", minimum=0, maximum=1000000, step=1, value=646373)
|
@@ -531,7 +514,6 @@ def create_advanced_options():
|
|
531 |
num_frames_slider,
|
532 |
]
|
533 |
|
534 |
-
|
535 |
# Define the Gradio interface with tabs
|
536 |
with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
537 |
with gr.Row(elem_id="title-row"):
|
|
|
21 |
import tempfile
|
22 |
import os
|
23 |
import gc
|
|
|
24 |
import csv
|
25 |
from datetime import datetime
|
26 |
|
|
|
27 |
# Load Hugging Face token if needed
|
28 |
hf_token = os.getenv("HF_TOKEN")
|
29 |
+
|
|
|
30 |
system_prompt_t2v_path = "assets/system_prompt_t2v.txt"
|
31 |
system_prompt_i2v_path = "assets/system_prompt_i2v.txt"
|
32 |
with open(system_prompt_t2v_path, "r") as f:
|
|
|
45 |
unet_dir = Path(model_path) / "unet"
|
46 |
scheduler_dir = Path(model_path) / "scheduler"
|
47 |
|
48 |
+
device = torch.device("cuda")
|
49 |
|
50 |
DATA_DIR = "/data"
|
51 |
os.makedirs(DATA_DIR, exist_ok=True)
|
|
|
54 |
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32", cache_dir=model_path)
|
55 |
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32", cache_dir=model_path)
|
56 |
|
|
|
57 |
if not os.path.exists(LOG_FILE_PATH):
|
58 |
with open(LOG_FILE_PATH, "w", newline="") as f:
|
59 |
writer = csv.writer(f)
|
|
|
76 |
]
|
77 |
)
|
78 |
|
|
|
79 |
@lru_cache(maxsize=128)
|
80 |
def log_request(
|
81 |
request_type,
|
|
|
118 |
except Exception as e:
|
119 |
print(f"Error logging request: {e}")
|
120 |
|
|
|
121 |
def compute_clip_embedding(text=None, image=None):
|
122 |
"""
|
123 |
Compute CLIP embedding for a given text or image.
|
|
|
132 |
embedding = outputs.detach().cpu().numpy().flatten().tolist()
|
133 |
return embedding
|
134 |
|
|
|
135 |
def load_vae(vae_dir):
|
136 |
vae_ckpt_path = vae_dir / "vae_diffusion_pytorch_model.safetensors"
|
137 |
vae_config_path = vae_dir / "config.json"
|
|
|
142 |
vae.load_state_dict(vae_state_dict)
|
143 |
return vae.to(device=device, dtype=torch.bfloat16)
|
144 |
|
|
|
145 |
def load_unet(unet_dir):
|
146 |
unet_ckpt_path = unet_dir / "unet_diffusion_pytorch_model.safetensors"
|
147 |
unet_config_path = unet_dir / "config.json"
|
|
|
151 |
transformer.load_state_dict(unet_state_dict, strict=True)
|
152 |
return transformer.to(device=device, dtype=torch.bfloat16)
|
153 |
|
|
|
154 |
def load_scheduler(scheduler_dir):
|
155 |
scheduler_config_path = scheduler_dir / "scheduler_config.json"
|
156 |
scheduler_config = RectifiedFlowScheduler.load_config(scheduler_config_path)
|
157 |
return RectifiedFlowScheduler.from_config(scheduler_config)
|
158 |
|
|
|
159 |
# Helper function for image processing
|
160 |
def center_crop_and_resize(frame, target_height, target_width):
|
161 |
h, w, _ = frame.shape
|
|
|
172 |
frame_resized = cv2.resize(frame_cropped, (target_width, target_height))
|
173 |
return frame_resized
|
174 |
|
|
|
175 |
def load_image_to_tensor_with_resize(image_path, target_height=512, target_width=768):
|
176 |
image = Image.open(image_path).convert("RGB")
|
177 |
image_np = np.array(image)
|
|
|
180 |
frame_tensor = (frame_tensor / 127.5) - 1.0
|
181 |
return frame_tensor.unsqueeze(0).unsqueeze(2)
|
182 |
|
|
|
183 |
def enhance_prompt_if_enabled(prompt, enhance_toggle, type="t2v"):
|
184 |
if not enhance_toggle:
|
185 |
print("Enhance toggle is off, Prompt: ", prompt)
|
|
|
203 |
print(f"Error: {e}")
|
204 |
return prompt
|
205 |
|
|
|
206 |
# Preset options for resolution and frame configuration
|
207 |
preset_options = [
|
208 |
{"label": "1216x704, 41 frames", "width": 1216, "height": 704, "num_frames": 41},
|
|
|
234 |
{"label": "512x320, 257 frames", "width": 512, "height": 320, "num_frames": 257},
|
235 |
]
|
236 |
|
|
|
237 |
# Function to toggle visibility of sliders based on preset selection
|
238 |
def preset_changed(preset):
|
239 |
if preset != "Custom":
|
|
|
256 |
gr.update(visible=True),
|
257 |
)
|
258 |
|
|
|
259 |
# Load models
|
260 |
vae = load_vae(vae_dir)
|
261 |
unet = load_unet(unet_dir)
|
|
|
273 |
vae=vae,
|
274 |
).to(device)
|
275 |
|
|
|
276 |
def generate_video_from_text(
|
277 |
prompt="",
|
278 |
enhance_prompt_toggle=False,
|
|
|
474 |
|
475 |
return output_path
|
476 |
|
|
|
477 |
def create_advanced_options():
|
478 |
with gr.Accordion("Step 4: Advanced Options (Optional)", open=False):
|
479 |
seed = gr.Slider(label="4.1 Seed", minimum=0, maximum=1000000, step=1, value=646373)
|
|
|
514 |
num_frames_slider,
|
515 |
]
|
516 |
|
|
|
517 |
# Define the Gradio interface with tabs
|
518 |
with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
519 |
with gr.Row(elem_id="title-row"):
|