File size: 21,946 Bytes
1504958
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
# Adapted from: https://github.com/huggingface/diffusers/blob/v0.26.3/src/diffusers/models/transformers/transformer_2d.py
import math
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Literal

import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.embeddings import PixArtAlphaTextProjection
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.normalization import AdaLayerNormSingle
from diffusers.utils import BaseOutput, is_torch_version
from diffusers.utils import logging
from torch import nn

from xora.models.transformers.attention import BasicTransformerBlock
from xora.models.transformers.embeddings import get_3d_sincos_pos_embed

logger = logging.get_logger(__name__)


@dataclass
class Transformer3DModelOutput(BaseOutput):
    """
    The output of [`Transformer2DModel`].

    Args:
        sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
            The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
            distributions for the unnoised latent pixels.
    """

    sample: torch.FloatTensor


class Transformer3DModel(ModelMixin, ConfigMixin):
    _supports_gradient_checkpointing = True

    @register_to_config
    def __init__(
        self,
        num_attention_heads: int = 16,
        attention_head_dim: int = 88,
        in_channels: Optional[int] = None,
        out_channels: Optional[int] = None,
        num_layers: int = 1,
        dropout: float = 0.0,
        norm_num_groups: int = 32,
        cross_attention_dim: Optional[int] = None,
        attention_bias: bool = False,
        num_vector_embeds: Optional[int] = None,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
        use_linear_projection: bool = False,
        only_cross_attention: bool = False,
        double_self_attention: bool = False,
        upcast_attention: bool = False,
        adaptive_norm: str = "single_scale_shift",  # 'single_scale_shift' or 'single_scale'
        standardization_norm: str = "layer_norm",  # 'layer_norm' or 'rms_norm'
        norm_elementwise_affine: bool = True,
        norm_eps: float = 1e-5,
        attention_type: str = "default",
        caption_channels: int = None,
        project_to_2d_pos: bool = False,
        use_tpu_flash_attention: bool = False,  # if True uses the TPU attention offload ('flash attention')
        qk_norm: Optional[str] = None,
        positional_embedding_type: str = "absolute",
        positional_embedding_theta: Optional[float] = None,
        positional_embedding_max_pos: Optional[List[int]] = None,
        timestep_scale_multiplier: Optional[float] = None,
    ):
        super().__init__()
        self.use_tpu_flash_attention = (
            use_tpu_flash_attention  # FIXME: push config down to the attention modules
        )
        self.use_linear_projection = use_linear_projection
        self.num_attention_heads = num_attention_heads
        self.attention_head_dim = attention_head_dim
        inner_dim = num_attention_heads * attention_head_dim
        self.inner_dim = inner_dim

        self.project_to_2d_pos = project_to_2d_pos

        self.patchify_proj = nn.Linear(in_channels, inner_dim, bias=True)

        self.positional_embedding_type = positional_embedding_type
        self.positional_embedding_theta = positional_embedding_theta
        self.positional_embedding_max_pos = positional_embedding_max_pos
        self.use_rope = self.positional_embedding_type == "rope"
        self.timestep_scale_multiplier = timestep_scale_multiplier

        if self.positional_embedding_type == "absolute":
            embed_dim_3d = (
                math.ceil((inner_dim / 2) * 3) if project_to_2d_pos else inner_dim
            )
            if self.project_to_2d_pos:
                self.to_2d_proj = torch.nn.Linear(embed_dim_3d, inner_dim, bias=False)
                self._init_to_2d_proj_weights(self.to_2d_proj)
        elif self.positional_embedding_type == "rope":
            if positional_embedding_theta is None:
                raise ValueError(
                    "If `positional_embedding_type` type is rope, `positional_embedding_theta` must also be defined"
                )
            if positional_embedding_max_pos is None:
                raise ValueError(
                    "If `positional_embedding_type` type is rope, `positional_embedding_max_pos` must also be defined"
                )

        # 3. Define transformers blocks
        self.transformer_blocks = nn.ModuleList(
            [
                BasicTransformerBlock(
                    inner_dim,
                    num_attention_heads,
                    attention_head_dim,
                    dropout=dropout,
                    cross_attention_dim=cross_attention_dim,
                    activation_fn=activation_fn,
                    num_embeds_ada_norm=num_embeds_ada_norm,
                    attention_bias=attention_bias,
                    only_cross_attention=only_cross_attention,
                    double_self_attention=double_self_attention,
                    upcast_attention=upcast_attention,
                    adaptive_norm=adaptive_norm,
                    standardization_norm=standardization_norm,
                    norm_elementwise_affine=norm_elementwise_affine,
                    norm_eps=norm_eps,
                    attention_type=attention_type,
                    use_tpu_flash_attention=use_tpu_flash_attention,
                    qk_norm=qk_norm,
                    use_rope=self.use_rope,
                )
                for d in range(num_layers)
            ]
        )

        # 4. Define output layers
        self.out_channels = in_channels if out_channels is None else out_channels
        self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
        self.scale_shift_table = nn.Parameter(
            torch.randn(2, inner_dim) / inner_dim**0.5
        )
        self.proj_out = nn.Linear(inner_dim, self.out_channels)

        self.adaln_single = AdaLayerNormSingle(
            inner_dim, use_additional_conditions=False
        )
        if adaptive_norm == "single_scale":
            self.adaln_single.linear = nn.Linear(inner_dim, 4 * inner_dim, bias=True)

        self.caption_projection = None
        if caption_channels is not None:
            self.caption_projection = PixArtAlphaTextProjection(
                in_features=caption_channels, hidden_size=inner_dim
            )

        self.gradient_checkpointing = False

    def set_use_tpu_flash_attention(self):
        r"""
        Function sets the flag in this object and propagates down the children. The flag will enforce the usage of TPU
        attention kernel.
        """
        logger.info("ENABLE TPU FLASH ATTENTION -> TRUE")
        self.use_tpu_flash_attention = True
        # push config down to the attention modules
        for block in self.transformer_blocks:
            block.set_use_tpu_flash_attention()

    def initialize(self, embedding_std: float, mode: Literal["xora", "legacy"]):
        def _basic_init(module):
            if isinstance(module, nn.Linear):
                torch.nn.init.xavier_uniform_(module.weight)
                if module.bias is not None:
                    nn.init.constant_(module.bias, 0)

        self.apply(_basic_init)

        # Initialize timestep embedding MLP:
        nn.init.normal_(
            self.adaln_single.emb.timestep_embedder.linear_1.weight, std=embedding_std
        )
        nn.init.normal_(
            self.adaln_single.emb.timestep_embedder.linear_2.weight, std=embedding_std
        )
        nn.init.normal_(self.adaln_single.linear.weight, std=embedding_std)

        if hasattr(self.adaln_single.emb, "resolution_embedder"):
            nn.init.normal_(
                self.adaln_single.emb.resolution_embedder.linear_1.weight,
                std=embedding_std,
            )
            nn.init.normal_(
                self.adaln_single.emb.resolution_embedder.linear_2.weight,
                std=embedding_std,
            )
        if hasattr(self.adaln_single.emb, "aspect_ratio_embedder"):
            nn.init.normal_(
                self.adaln_single.emb.aspect_ratio_embedder.linear_1.weight,
                std=embedding_std,
            )
            nn.init.normal_(
                self.adaln_single.emb.aspect_ratio_embedder.linear_2.weight,
                std=embedding_std,
            )

        # Initialize caption embedding MLP:
        nn.init.normal_(self.caption_projection.linear_1.weight, std=embedding_std)
        nn.init.normal_(self.caption_projection.linear_1.weight, std=embedding_std)

        for block in self.transformer_blocks:
            if mode.lower() == "xora":
                nn.init.constant_(block.attn1.to_out[0].weight, 0)
                nn.init.constant_(block.attn1.to_out[0].bias, 0)

            nn.init.constant_(block.attn2.to_out[0].weight, 0)
            nn.init.constant_(block.attn2.to_out[0].bias, 0)

            if mode.lower() == "xora":
                nn.init.constant_(block.ff.net[2].weight, 0)
                nn.init.constant_(block.ff.net[2].bias, 0)

        # Zero-out output layers:
        nn.init.constant_(self.proj_out.weight, 0)
        nn.init.constant_(self.proj_out.bias, 0)

    def _set_gradient_checkpointing(self, module, value=False):
        if hasattr(module, "gradient_checkpointing"):
            module.gradient_checkpointing = value

    @staticmethod
    def _init_to_2d_proj_weights(linear_layer):
        input_features = linear_layer.weight.data.size(1)
        output_features = linear_layer.weight.data.size(0)

        # Start with a zero matrix
        identity_like = torch.zeros((output_features, input_features))

        # Fill the diagonal with 1's as much as possible
        min_features = min(output_features, input_features)
        identity_like[:min_features, :min_features] = torch.eye(min_features)
        linear_layer.weight.data = identity_like.to(linear_layer.weight.data.device)

    def get_fractional_positions(self, indices_grid):
        fractional_positions = torch.stack(
            [
                indices_grid[:, i] / self.positional_embedding_max_pos[i]
                for i in range(3)
            ],
            dim=-1,
        )
        return fractional_positions

    def precompute_freqs_cis(self, indices_grid, spacing="exp"):
        dtype = torch.float32  # We need full precision in the freqs_cis computation.
        dim = self.inner_dim
        theta = self.positional_embedding_theta

        fractional_positions = self.get_fractional_positions(indices_grid)

        start = 1
        end = theta
        device = fractional_positions.device
        if spacing == "exp":
            indices = theta ** (
                torch.linspace(
                    math.log(start, theta),
                    math.log(end, theta),
                    dim // 6,
                    device=device,
                    dtype=dtype,
                )
            )
            indices = indices.to(dtype=dtype)
        elif spacing == "exp_2":
            indices = 1.0 / theta ** (torch.arange(0, dim, 6, device=device) / dim)
            indices = indices.to(dtype=dtype)
        elif spacing == "linear":
            indices = torch.linspace(start, end, dim // 6, device=device, dtype=dtype)
        elif spacing == "sqrt":
            indices = torch.linspace(
                start**2, end**2, dim // 6, device=device, dtype=dtype
            ).sqrt()

        indices = indices * math.pi / 2

        if spacing == "exp_2":
            freqs = (
                (indices * fractional_positions.unsqueeze(-1))
                .transpose(-1, -2)
                .flatten(2)
            )
        else:
            freqs = (
                (indices * (fractional_positions.unsqueeze(-1) * 2 - 1))
                .transpose(-1, -2)
                .flatten(2)
            )

        cos_freq = freqs.cos().repeat_interleave(2, dim=-1)
        sin_freq = freqs.sin().repeat_interleave(2, dim=-1)
        if dim % 6 != 0:
            cos_padding = torch.ones_like(cos_freq[:, :, : dim % 6])
            sin_padding = torch.zeros_like(cos_freq[:, :, : dim % 6])
            cos_freq = torch.cat([cos_padding, cos_freq], dim=-1)
            sin_freq = torch.cat([sin_padding, sin_freq], dim=-1)
        return cos_freq.to(self.dtype), sin_freq.to(self.dtype)

    def forward(
        self,
        hidden_states: torch.Tensor,
        indices_grid: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        timestep: Optional[torch.LongTensor] = None,
        class_labels: Optional[torch.LongTensor] = None,
        cross_attention_kwargs: Dict[str, Any] = None,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        return_dict: bool = True,
    ):
        """
        The [`Transformer2DModel`] forward method.

        Args:
            hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
                Input `hidden_states`.
            indices_grid (`torch.LongTensor` of shape `(batch size, 3, num latent pixels)`):
            encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
                Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
                self-attention.
            timestep ( `torch.LongTensor`, *optional*):
                Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
            class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
                Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
                `AdaLayerZeroNorm`.
            cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            attention_mask ( `torch.Tensor`, *optional*):
                An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
                is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
                negative values to the attention scores corresponding to "discard" tokens.
            encoder_attention_mask ( `torch.Tensor`, *optional*):
                Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:

                    * Mask `(batch, sequence_length)` True = keep, False = discard.
                    * Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.

                If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
                above. This bias will be added to the cross-attention scores.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
                tuple.

        Returns:
            If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
            `tuple` where the first element is the sample tensor.
        """
        # for tpu attention offload 2d token masks are used. No need to transform.
        if not self.use_tpu_flash_attention:
            # ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
            #   we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
            #   we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
            # expects mask of shape:
            #   [batch, key_tokens]
            # adds singleton query_tokens dimension:
            #   [batch,                    1, key_tokens]
            # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
            #   [batch,  heads, query_tokens, key_tokens] (e.g. torch sdp attn)
            #   [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
            if attention_mask is not None and attention_mask.ndim == 2:
                # assume that mask is expressed as:
                #   (1 = keep,      0 = discard)
                # convert mask into a bias that can be added to attention scores:
                #       (keep = +0,     discard = -10000.0)
                attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
                attention_mask = attention_mask.unsqueeze(1)

            # convert encoder_attention_mask to a bias the same way we do for attention_mask
            if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
                encoder_attention_mask = (
                    1 - encoder_attention_mask.to(hidden_states.dtype)
                ) * -10000.0
                encoder_attention_mask = encoder_attention_mask.unsqueeze(1)

        # 1. Input
        hidden_states = self.patchify_proj(hidden_states)

        if self.timestep_scale_multiplier:
            timestep = self.timestep_scale_multiplier * timestep

        if self.positional_embedding_type == "absolute":
            pos_embed_3d = self.get_absolute_pos_embed(indices_grid).to(
                hidden_states.device
            )
            if self.project_to_2d_pos:
                pos_embed = self.to_2d_proj(pos_embed_3d)
            hidden_states = (hidden_states + pos_embed).to(hidden_states.dtype)
            freqs_cis = None
        elif self.positional_embedding_type == "rope":
            freqs_cis = self.precompute_freqs_cis(indices_grid)

        batch_size = hidden_states.shape[0]
        timestep, embedded_timestep = self.adaln_single(
            timestep.flatten(),
            {"resolution": None, "aspect_ratio": None},
            batch_size=batch_size,
            hidden_dtype=hidden_states.dtype,
        )
        # Second dimension is 1 or number of tokens (if timestep_per_token)
        timestep = timestep.view(batch_size, -1, timestep.shape[-1])
        embedded_timestep = embedded_timestep.view(
            batch_size, -1, embedded_timestep.shape[-1]
        )

        # 2. Blocks
        if self.caption_projection is not None:
            batch_size = hidden_states.shape[0]
            encoder_hidden_states = self.caption_projection(encoder_hidden_states)
            encoder_hidden_states = encoder_hidden_states.view(
                batch_size, -1, hidden_states.shape[-1]
            )

        for block in self.transformer_blocks:
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = (
                    {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                )
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    freqs_cis,
                    attention_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
                    timestep,
                    cross_attention_kwargs,
                    class_labels,
                    **ckpt_kwargs,
                )
            else:
                hidden_states = block(
                    hidden_states,
                    freqs_cis=freqs_cis,
                    attention_mask=attention_mask,
                    encoder_hidden_states=encoder_hidden_states,
                    encoder_attention_mask=encoder_attention_mask,
                    timestep=timestep,
                    cross_attention_kwargs=cross_attention_kwargs,
                    class_labels=class_labels,
                )

        # 3. Output
        scale_shift_values = (
            self.scale_shift_table[None, None] + embedded_timestep[:, :, None]
        )
        shift, scale = scale_shift_values[:, :, 0], scale_shift_values[:, :, 1]
        hidden_states = self.norm_out(hidden_states)
        # Modulation
        hidden_states = hidden_states * (1 + scale) + shift
        hidden_states = self.proj_out(hidden_states)
        if not return_dict:
            return (hidden_states,)

        return Transformer3DModelOutput(sample=hidden_states)

    def get_absolute_pos_embed(self, grid):
        grid_np = grid[0].cpu().numpy()
        embed_dim_3d = (
            math.ceil((self.inner_dim / 2) * 3)
            if self.project_to_2d_pos
            else self.inner_dim
        )
        pos_embed = get_3d_sincos_pos_embed(  # (f h w)
            embed_dim_3d,
            grid_np,
            h=int(max(grid_np[1]) + 1),
            w=int(max(grid_np[2]) + 1),
            f=int(max(grid_np[0] + 1)),
        )
        return torch.from_numpy(pos_embed).float().unsqueeze(0)