Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,471 Bytes
1504958 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
# Adapted from: https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/embeddings.py
import math
import numpy as np
import torch
from einops import rearrange
from torch import nn
def get_timestep_embedding(
timesteps: torch.Tensor,
embedding_dim: int,
flip_sin_to_cos: bool = False,
downscale_freq_shift: float = 1,
scale: float = 1,
max_period: int = 10000,
):
"""
This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
:param timesteps: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the
embeddings. :return: an [N x dim] Tensor of positional embeddings.
"""
assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
half_dim = embedding_dim // 2
exponent = -math.log(max_period) * torch.arange(
start=0, end=half_dim, dtype=torch.float32, device=timesteps.device
)
exponent = exponent / (half_dim - downscale_freq_shift)
emb = torch.exp(exponent)
emb = timesteps[:, None].float() * emb[None, :]
# scale embeddings
emb = scale * emb
# concat sine and cosine embeddings
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)
# flip sine and cosine embeddings
if flip_sin_to_cos:
emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1)
# zero pad
if embedding_dim % 2 == 1:
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
return emb
def get_3d_sincos_pos_embed(embed_dim, grid, w, h, f):
"""
grid_size: int of the grid height and width return: pos_embed: [grid_size*grid_size, embed_dim] or
[1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
"""
grid = rearrange(grid, "c (f h w) -> c f h w", h=h, w=w)
grid = rearrange(grid, "c f h w -> c h w f", h=h, w=w)
grid = grid.reshape([3, 1, w, h, f])
pos_embed = get_3d_sincos_pos_embed_from_grid(embed_dim, grid)
pos_embed = pos_embed.transpose(1, 0, 2, 3)
return rearrange(pos_embed, "h w f c -> (f h w) c")
def get_3d_sincos_pos_embed_from_grid(embed_dim, grid):
if embed_dim % 3 != 0:
raise ValueError("embed_dim must be divisible by 3")
# use half of dimensions to encode grid_h
emb_f = get_1d_sincos_pos_embed_from_grid(embed_dim // 3, grid[0]) # (H*W*T, D/3)
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 3, grid[1]) # (H*W*T, D/3)
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 3, grid[2]) # (H*W*T, D/3)
emb = np.concatenate([emb_h, emb_w, emb_f], axis=-1) # (H*W*T, D)
return emb
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
"""
embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D)
"""
if embed_dim % 2 != 0:
raise ValueError("embed_dim must be divisible by 2")
omega = np.arange(embed_dim // 2, dtype=np.float64)
omega /= embed_dim / 2.0
omega = 1.0 / 10000**omega # (D/2,)
pos_shape = pos.shape
pos = pos.reshape(-1)
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
out = out.reshape([*pos_shape, -1])[0]
emb_sin = np.sin(out) # (M, D/2)
emb_cos = np.cos(out) # (M, D/2)
emb = np.concatenate([emb_sin, emb_cos], axis=-1) # (M, D)
return emb
class SinusoidalPositionalEmbedding(nn.Module):
"""Apply positional information to a sequence of embeddings.
Takes in a sequence of embeddings with shape (batch_size, seq_length, embed_dim) and adds positional embeddings to
them
Args:
embed_dim: (int): Dimension of the positional embedding.
max_seq_length: Maximum sequence length to apply positional embeddings
"""
def __init__(self, embed_dim: int, max_seq_length: int = 32):
super().__init__()
position = torch.arange(max_seq_length).unsqueeze(1)
div_term = torch.exp(
torch.arange(0, embed_dim, 2) * (-math.log(10000.0) / embed_dim)
)
pe = torch.zeros(1, max_seq_length, embed_dim)
pe[0, :, 0::2] = torch.sin(position * div_term)
pe[0, :, 1::2] = torch.cos(position * div_term)
self.register_buffer("pe", pe)
def forward(self, x):
_, seq_length, _ = x.shape
x = x + self.pe[:, :seq_length]
return x
|