import spaces import os import json import torch import random import requests from PIL import Image import numpy as np import gradio as gr from datetime import datetime import torchvision.transforms as T from diffusers import DDIMScheduler from diffusers.utils.import_utils import is_xformers_available from consisti2v.pipelines.pipeline_conditional_animation import ConditionalAnimationPipeline from consisti2v.utils.util import save_videos_grid from omegaconf import OmegaConf from transformers import pipeline as translation_pipeline # Translation pipeline for Korean to English translator = translation_pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en") sample_idx = 0 scheduler_dict = { "DDIM": DDIMScheduler, } css = """ .toolbutton { margin-buttom: 0em 0em 0em 0em; max-width: 2.5em; min-width: 2.5em !important; height: 2.5em; } """ basedir = os.getcwd() savedir = os.path.join(basedir, "samples/Gradio", datetime.now().strftime("%Y-%m-%dT%H-%M-%S")) savedir_sample = os.path.join(savedir, "sample") os.makedirs(savedir, exist_ok=True) EXAMPLES = [ # prompt, first frame, width, height, center crop, seed ["오로라가 하늘에 있는 눈 덮인 땅의 타임랩스.", "example/example_01.png"], ["불꽃놀이.", "example/example_02.png"], ["산호초를 헤엄치는 흰동가리.", "example/example_03.png"], ["콘에서 녹아내리는 아이스크림.", "example/example_04.png"], ] EXAMPLES_HIDDEN = { "timelapse at the snow land with aurora in the sky.": ["example/example_01.png", 256, 256, True, 21800], "fireworks.": ["example/example_02.png", 256, 256, True, 21800], "clown fish swimming through the coral reef.": ["example/example_03.png", 256, 256, True, 75692375], "melting ice cream dripping down the cone.": ["example/example_04.png", 256, 256, True, 21800] } def update_and_resize_image(input_image_path, height_slider, width_slider, center_crop): if input_image_path.startswith("http://") or input_image_path.startswith("https://"): pil_image = Image.open(requests.get(input_image_path, stream=True).raw).convert('RGB') else: pil_image = Image.open(input_image_path).convert('RGB') original_width, original_height = pil_image.size if center_crop: crop_aspect_ratio = width_slider / height_slider aspect_ratio = original_width / original_height if aspect_ratio > crop_aspect_ratio: new_width = int(crop_aspect_ratio * original_height) left = (original_width - new_width) / 2 top = 0 right = left + new_width bottom = original_height pil_image = pil_image.crop((left, top, right, bottom)) elif aspect_ratio < crop_aspect_ratio: new_height = int(original_width / crop_aspect_ratio) top = (original_height - new_height) / 2 left = 0 right = original_width bottom = top + new_height pil_image = pil_image.crop((left, top, right, bottom)) pil_image = pil_image.resize((width_slider, height_slider)) return gr.Image(value=np.array(pil_image)) def get_examples(prompt_textbox, input_image): input_image_path = EXAMPLES_HIDDEN[prompt_textbox][0] width_slider = EXAMPLES_HIDDEN[prompt_textbox][1] height_slider = EXAMPLES_HIDDEN[prompt_textbox][2] center_crop = EXAMPLES_HIDDEN[prompt_textbox][3] seed_textbox = EXAMPLES_HIDDEN[prompt_textbox][4] input_image = update_and_resize_image(input_image_path, height_slider, width_slider, center_crop) return prompt_textbox, input_image, input_image_path, width_slider, height_slider, center_crop, seed_textbox # config models pipeline = ConditionalAnimationPipeline.from_pretrained("TIGER-Lab/ConsistI2V", torch_dtype=torch.float16) pipeline.to("cuda") def update_textbox_and_save_image(input_image, height_slider, width_slider, center_crop): pil_image = Image.fromarray(input_image.astype(np.uint8)).convert("RGB") img_path = os.path.join(savedir, "input_image.png") pil_image.save(img_path) original_width, original_height = pil_image.size if center_crop: crop_aspect_ratio = width_slider / height_slider aspect_ratio = original_width / original_height if aspect_ratio > crop_aspect_ratio: new_width = int(crop_aspect_ratio * original_height) left = (original_width - new_width) / 2 top = 0 right = left + new_width bottom = original_height pil_image = pil_image.crop((left, top, right, bottom)) elif aspect_ratio < crop_aspect_ratio: new_height = int(original_width / crop_aspect_ratio) top = (original_height - new_height) / 2 left = 0 right = original_width bottom = top + new_height pil_image = pil_image.crop((left, top, right, bottom)) pil_image = pil_image.resize((width_slider, height_slider)) return gr.Textbox(value=img_path), gr.Image(value=np.array(pil_image)) @spaces.GPU(duration=60) def animate( prompt_textbox, negative_prompt_textbox, input_image_path, sampler_dropdown, sample_step_slider, width_slider, height_slider, txt_cfg_scale_slider, img_cfg_scale_slider, center_crop, frame_stride, use_frameinit, frame_init_noise_level, seed_textbox ): width_slider = int(width_slider) height_slider = int(height_slider) frame_stride = int(frame_stride) sample_step_slider = int(sample_step_slider) txt_cfg_scale_slider = float(txt_cfg_scale_slider) img_cfg_scale_slider = float(img_cfg_scale_slider) frame_init_noise_level = int(frame_init_noise_level) if pipeline is None: raise gr.Error(f"Please select a pretrained pipeline path.") if input_image_path == "": raise gr.Error(f"Please upload an input image.") if (not center_crop) and (width_slider % 8 != 0 or height_slider % 8 != 0): raise gr.Error(f"`height` and `width` have to be divisible by 8 but are {height_slider} and {width_slider}.") if center_crop and (width_slider % 8 != 0 or height_slider % 8 != 0): raise gr.Error(f"`height` and `width` (after cropping) have to be divisible by 8 but are {height_slider} and {width_slider}.") if is_xformers_available() and int(torch.__version__.split(".")[0]) < 2: pipeline.unet.enable_xformers_memory_efficient_attention() if seed_textbox != -1 and seed_textbox != "": torch.manual_seed(int(seed_textbox)) else: torch.seed() seed = torch.initial_seed() if input_image_path.startswith("http://") or input_image_path.startswith("https://"): first_frame = Image.open(requests.get(input_image_path, stream=True).raw).convert('RGB') else: first_frame = Image.open(input_image_path).convert('RGB') original_width, original_height = first_frame.size if not center_crop: img_transform = T.Compose([ T.ToTensor(), T.Resize((height_slider, width_slider), antialias=None), T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True), ]) else: aspect_ratio = original_width / original_height crop_aspect_ratio = width_slider / height_slider if aspect_ratio > crop_aspect_ratio: center_crop_width = int(crop_aspect_ratio * original_height) center_crop_height = original_height elif aspect_ratio < crop_aspect_ratio: center_crop_width = original_width center_crop_height = int(original_width / crop_aspect_ratio) else: center_crop_width = original_width center_crop_height = original_height img_transform = T.Compose([ T.ToTensor(), T.CenterCrop((center_crop_height, center_crop_width)), T.Resize((height_slider, width_slider), antialias=None), T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True), ]) first_frame = img_transform(first_frame).unsqueeze(0) first_frame = first_frame.to("cuda") if use_frameinit: pipeline.init_filter( width = width_slider, height = height_slider, video_length = 16, filter_params = OmegaConf.create({'method': 'gaussian', 'd_s': 0.25, 'd_t': 0.25,}) ) # Translate Korean prompt to English translated_prompt = translator(prompt_textbox, src_lang="ko", tgt_lang="en")[0]['translation_text'] sample = pipeline( translated_prompt, negative_prompt = negative_prompt_textbox, first_frames = first_frame, num_inference_steps = sample_step_slider, guidance_scale_txt = txt_cfg_scale_slider, guidance_scale_img = img_cfg_scale_slider, width = width_slider, height = height_slider, video_length = 16, noise_sampling_method = "pyoco_mixed", noise_alpha = 1.0, frame_stride = frame_stride, use_frameinit = use_frameinit, frameinit_noise_level = frame_init_noise_level, camera_motion = None, ).videos global sample_idx sample_idx += 1 save_sample_path = os.path.join(savedir_sample, f"{sample_idx}.mp4") save_videos_grid(sample, save_sample_path, format="mp4") sample_config = { "prompt": prompt_textbox, "n_prompt": negative_prompt_textbox, "first_frame_path": input_image_path, "sampler": sampler_dropdown, "num_inference_steps": sample_step_slider, "guidance_scale_text": txt_cfg_scale_slider, "guidance_scale_image": img_cfg_scale_slider, "width": width_slider, "height": height_slider, "video_length": 8, "seed": seed } json_str = json.dumps(sample_config, indent=4) with open(os.path.join(savedir, "logs.json"), "a") as f: f.write(json_str) f.write("\n\n") return gr.Video(value=save_sample_path) def ui(): with gr.Blocks(css=css) as demo: gr.Markdown( """ # Text+Image to Video Generation """ ) with gr.Row(): prompt_textbox = gr.Textbox(label="프롬프트 (한글)", lines=2) negative_prompt_textbox = gr.Textbox(label="Negative prompt", lines=2) with gr.Row(equal_height=False): with gr.Column(): with gr.Row(): sampler_dropdown = gr.Dropdown(label="Sampling method", choices=list(scheduler_dict.keys()), value=list(scheduler_dict.keys())[0]) sample_step_slider = gr.Slider(label="Sampling steps", value=250, minimum=10, maximum=250, step=1) with gr.Row(): center_crop = gr.Checkbox(label="Center Crop the Image", value=True) width_slider = gr.Slider(label="Width", value=512, minimum=0, maximum=512, step=64) height_slider = gr.Slider(label="Height", value=512, minimum=0, maximum=512, step=64) with gr.Row(): txt_cfg_scale_slider = gr.Slider(label="Text CFG Scale", value=7.5, minimum=1.0, maximum=20.0, step=0.5) img_cfg_scale_slider = gr.Slider(label="Image CFG Scale", value=1.0, minimum=1.0, maximum=20.0, step=0.5) frame_stride = gr.Slider(label="Frame Stride", value=3, minimum=1, maximum=5, step=1) with gr.Row(): use_frameinit = gr.Checkbox(label="Enable FrameInit", value=True) frameinit_noise_level = gr.Slider(label="FrameInit Noise Level", value=850, minimum=1, maximum=999, step=1) seed_textbox = gr.Textbox(label="Seed", value=-1) seed_button = gr.Button(value="\U0001F3B2", elem_classes="toolbutton") seed_button.click(fn=lambda: gr.Textbox(value=random.randint(1, 1e8)), inputs=[], outputs=[seed_textbox]) generate_button = gr.Button(value="Generate", variant='primary') with gr.Column(): with gr.Row(): input_image_path = gr.Textbox(label="Input Image URL", lines=1, scale=10, info="Press Enter or the Preview button to confirm the input image.") preview_button = gr.Button(value="Preview") with gr.Row(): input_image = gr.Image(label="Input Image", interactive=True) input_image.upload(fn=update_textbox_and_save_image, inputs=[input_image, height_slider, width_slider, center_crop], outputs=[input_image_path, input_image]) result_video = gr.Video(label="Generated Animation", interactive=False, autoplay=True) with gr.Row(): batch_examples = gr.Examples( examples=EXAMPLES, fn=get_examples, cache_examples=True, examples_per_page=4, inputs=[prompt_textbox, input_image], outputs=[prompt_textbox, input_image, input_image_path, width_slider, height_slider, center_crop, seed_textbox], ) preview_button.click(fn=update_and_resize_image, inputs=[input_image_path, height_slider, width_slider, center_crop], outputs=[input_image]) input_image_path.submit(fn=update_and_resize_image, inputs=[input_image_path, height_slider, width_slider, center_crop], outputs=[input_image]) generate_button.click( fn=animate, inputs=[ prompt_textbox, negative_prompt_textbox, input_image_path, sampler_dropdown, sample_step_slider, width_slider, height_slider, txt_cfg_scale_slider, img_cfg_scale_slider, center_crop, frame_stride, use_frameinit, frameinit_noise_level, seed_textbox, ], outputs=[result_video] ) return demo if __name__ == "__main__": demo = ui() demo.launch(share=True)