Spaces:
Paused
Paused
add examples
Browse files- .gitattributes +1 -0
- .gitignore +2 -1
- app.py +70 -65
- example/example_01.png +3 -0
- example/example_02.png +3 -0
- example/example_03.png +3 -0
- example/example_04.png +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
.gitignore
CHANGED
@@ -15,4 +15,5 @@ debugs/
|
|
15 |
models
|
16 |
!*/models
|
17 |
.ipynb_checkpoints
|
18 |
-
checkpoints
|
|
|
|
15 |
models
|
16 |
!*/models
|
17 |
.ipynb_checkpoints
|
18 |
+
checkpoints
|
19 |
+
gradio_cached_examples
|
app.py
CHANGED
@@ -39,6 +39,58 @@ savedir = os.path.join(basedir, "samples/Gradio", datetime.now().strftime
|
|
39 |
savedir_sample = os.path.join(savedir, "sample")
|
40 |
os.makedirs(savedir, exist_ok=True)
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
# config models
|
43 |
pipeline = ConditionalAnimationPipeline.from_pretrained("TIGER-Lab/ConsistI2V", torch_dtype=torch.float16)
|
44 |
pipeline.to("cuda")
|
@@ -89,6 +141,14 @@ def animate(
|
|
89 |
frame_init_noise_level,
|
90 |
seed_textbox
|
91 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
if pipeline is None:
|
93 |
raise gr.Error(f"Please select a pretrained pipeline path.")
|
94 |
if input_image_path == "":
|
@@ -190,44 +250,6 @@ def animate(
|
|
190 |
|
191 |
return gr.Video(value=save_sample_path)
|
192 |
|
193 |
-
|
194 |
-
# @spaces.GPU
|
195 |
-
# def run_pipeline(
|
196 |
-
# pipeline,
|
197 |
-
# prompt_textbox,
|
198 |
-
# negative_prompt_textbox,
|
199 |
-
# first_frame,
|
200 |
-
# sample_step_slider,
|
201 |
-
# width_slider,
|
202 |
-
# height_slider,
|
203 |
-
# txt_cfg_scale_slider,
|
204 |
-
# img_cfg_scale_slider,
|
205 |
-
# frame_stride,
|
206 |
-
# use_frameinit,
|
207 |
-
# frame_init_noise_level,
|
208 |
-
|
209 |
-
# ):
|
210 |
-
# first_frame = first_frame.to("cuda")
|
211 |
-
# sample = pipeline(
|
212 |
-
# prompt_textbox,
|
213 |
-
# negative_prompt = negative_prompt_textbox,
|
214 |
-
# first_frames = first_frame,
|
215 |
-
# num_inference_steps = sample_step_slider,
|
216 |
-
# guidance_scale_txt = txt_cfg_scale_slider,
|
217 |
-
# guidance_scale_img = img_cfg_scale_slider,
|
218 |
-
# width = width_slider,
|
219 |
-
# height = height_slider,
|
220 |
-
# video_length = 16,
|
221 |
-
# noise_sampling_method = "pyoco_mixed",
|
222 |
-
# noise_alpha = 1.0,
|
223 |
-
# frame_stride = frame_stride,
|
224 |
-
# use_frameinit = use_frameinit,
|
225 |
-
# frameinit_noise_level = frame_init_noise_level,
|
226 |
-
# camera_motion = None,
|
227 |
-
# ).videos
|
228 |
-
# return sample
|
229 |
-
|
230 |
-
|
231 |
def ui():
|
232 |
with gr.Blocks(css=css) as demo:
|
233 |
gr.Markdown(
|
@@ -287,34 +309,16 @@ def ui():
|
|
287 |
input_image = gr.Image(label="Input Image", interactive=True)
|
288 |
input_image.upload(fn=update_textbox_and_save_image, inputs=[input_image, height_slider, width_slider, center_crop], outputs=[input_image_path, input_image])
|
289 |
result_video = gr.Video(label="Generated Animation", interactive=False, autoplay=True)
|
290 |
-
|
291 |
-
def update_and_resize_image(input_image_path, height_slider, width_slider, center_crop):
|
292 |
-
if input_image_path.startswith("http://") or input_image_path.startswith("https://"):
|
293 |
-
pil_image = Image.open(requests.get(input_image_path, stream=True).raw).convert('RGB')
|
294 |
-
else:
|
295 |
-
pil_image = Image.open(input_image_path).convert('RGB')
|
296 |
-
original_width, original_height = pil_image.size
|
297 |
-
|
298 |
-
if center_crop:
|
299 |
-
crop_aspect_ratio = width_slider / height_slider
|
300 |
-
aspect_ratio = original_width / original_height
|
301 |
-
if aspect_ratio > crop_aspect_ratio:
|
302 |
-
new_width = int(crop_aspect_ratio * original_height)
|
303 |
-
left = (original_width - new_width) / 2
|
304 |
-
top = 0
|
305 |
-
right = left + new_width
|
306 |
-
bottom = original_height
|
307 |
-
pil_image = pil_image.crop((left, top, right, bottom))
|
308 |
-
elif aspect_ratio < crop_aspect_ratio:
|
309 |
-
new_height = int(original_width / crop_aspect_ratio)
|
310 |
-
top = (original_height - new_height) / 2
|
311 |
-
left = 0
|
312 |
-
right = original_width
|
313 |
-
bottom = top + new_height
|
314 |
-
pil_image = pil_image.crop((left, top, right, bottom))
|
315 |
|
316 |
-
|
317 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
318 |
|
319 |
preview_button.click(fn=update_and_resize_image, inputs=[input_image_path, height_slider, width_slider, center_crop], outputs=[input_image])
|
320 |
input_image_path.submit(fn=update_and_resize_image, inputs=[input_image_path, height_slider, width_slider, center_crop], outputs=[input_image])
|
@@ -339,6 +343,7 @@ def ui():
|
|
339 |
],
|
340 |
outputs=[result_video]
|
341 |
)
|
|
|
342 |
|
343 |
return demo
|
344 |
|
|
|
39 |
savedir_sample = os.path.join(savedir, "sample")
|
40 |
os.makedirs(savedir, exist_ok=True)
|
41 |
|
42 |
+
EXAMPLES = [ # prompt, first frame, width, height, center crop, seed
|
43 |
+
["timelapse at the snow land with aurora in the sky.", "example/example_01.png"],
|
44 |
+
["fireworks.", "example/example_02.png"],
|
45 |
+
["clown fish swimming through the coral reef.", "example/example_03.png"],
|
46 |
+
["melting ice cream dripping down the cone.", "example/example_04.png"],
|
47 |
+
]
|
48 |
+
|
49 |
+
EXAMPLES_HIDDEN = {
|
50 |
+
"timelapse at the snow land with aurora in the sky.": ["example/example_01.png", 256, 256, True, 21800],
|
51 |
+
"fireworks.": ["example/example_02.png", 256, 256, True, 21800],
|
52 |
+
"clown fish swimming through the coral reef.": ["example/example_03.png", 256, 256, True, 21800],
|
53 |
+
"melting ice cream dripping down the cone.": ["example/example_04.png", 256, 256, True, 21800]
|
54 |
+
}
|
55 |
+
|
56 |
+
def update_and_resize_image(input_image_path, height_slider, width_slider, center_crop):
|
57 |
+
if input_image_path.startswith("http://") or input_image_path.startswith("https://"):
|
58 |
+
pil_image = Image.open(requests.get(input_image_path, stream=True).raw).convert('RGB')
|
59 |
+
else:
|
60 |
+
pil_image = Image.open(input_image_path).convert('RGB')
|
61 |
+
original_width, original_height = pil_image.size
|
62 |
+
|
63 |
+
if center_crop:
|
64 |
+
crop_aspect_ratio = width_slider / height_slider
|
65 |
+
aspect_ratio = original_width / original_height
|
66 |
+
if aspect_ratio > crop_aspect_ratio:
|
67 |
+
new_width = int(crop_aspect_ratio * original_height)
|
68 |
+
left = (original_width - new_width) / 2
|
69 |
+
top = 0
|
70 |
+
right = left + new_width
|
71 |
+
bottom = original_height
|
72 |
+
pil_image = pil_image.crop((left, top, right, bottom))
|
73 |
+
elif aspect_ratio < crop_aspect_ratio:
|
74 |
+
new_height = int(original_width / crop_aspect_ratio)
|
75 |
+
top = (original_height - new_height) / 2
|
76 |
+
left = 0
|
77 |
+
right = original_width
|
78 |
+
bottom = top + new_height
|
79 |
+
pil_image = pil_image.crop((left, top, right, bottom))
|
80 |
+
|
81 |
+
pil_image = pil_image.resize((width_slider, height_slider))
|
82 |
+
return gr.Image(value=np.array(pil_image))
|
83 |
+
|
84 |
+
|
85 |
+
def get_examples(prompt_textbox, input_image):
|
86 |
+
input_image_path = EXAMPLES_HIDDEN[prompt_textbox][0]
|
87 |
+
width_slider = EXAMPLES_HIDDEN[prompt_textbox][1]
|
88 |
+
height_slider = EXAMPLES_HIDDEN[prompt_textbox][2]
|
89 |
+
center_crop = EXAMPLES_HIDDEN[prompt_textbox][3]
|
90 |
+
seed_textbox = EXAMPLES_HIDDEN[prompt_textbox][4]
|
91 |
+
input_image = update_and_resize_image(input_image_path, height_slider, width_slider, center_crop)
|
92 |
+
return prompt_textbox, input_image, input_image_path, width_slider, height_slider, center_crop, seed_textbox
|
93 |
+
|
94 |
# config models
|
95 |
pipeline = ConditionalAnimationPipeline.from_pretrained("TIGER-Lab/ConsistI2V", torch_dtype=torch.float16)
|
96 |
pipeline.to("cuda")
|
|
|
141 |
frame_init_noise_level,
|
142 |
seed_textbox
|
143 |
):
|
144 |
+
width_slider = int(width_slider)
|
145 |
+
height_slider = int(height_slider)
|
146 |
+
frame_stride = int(frame_stride)
|
147 |
+
sample_step_slider = int(sample_step_slider)
|
148 |
+
txt_cfg_scale_slider = float(txt_cfg_scale_slider)
|
149 |
+
img_cfg_scale_slider = float(img_cfg_scale_slider)
|
150 |
+
frame_init_noise_level = int(frame_init_noise_level)
|
151 |
+
|
152 |
if pipeline is None:
|
153 |
raise gr.Error(f"Please select a pretrained pipeline path.")
|
154 |
if input_image_path == "":
|
|
|
250 |
|
251 |
return gr.Video(value=save_sample_path)
|
252 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
def ui():
|
254 |
with gr.Blocks(css=css) as demo:
|
255 |
gr.Markdown(
|
|
|
309 |
input_image = gr.Image(label="Input Image", interactive=True)
|
310 |
input_image.upload(fn=update_textbox_and_save_image, inputs=[input_image, height_slider, width_slider, center_crop], outputs=[input_image_path, input_image])
|
311 |
result_video = gr.Video(label="Generated Animation", interactive=False, autoplay=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
312 |
|
313 |
+
with gr.Row():
|
314 |
+
batch_examples = gr.Examples(
|
315 |
+
examples=EXAMPLES,
|
316 |
+
fn=get_examples,
|
317 |
+
cache_examples=True,
|
318 |
+
examples_per_page=4,
|
319 |
+
inputs=[prompt_textbox, input_image],
|
320 |
+
outputs=[prompt_textbox, input_image, input_image_path, width_slider, height_slider, center_crop, seed_textbox],
|
321 |
+
)
|
322 |
|
323 |
preview_button.click(fn=update_and_resize_image, inputs=[input_image_path, height_slider, width_slider, center_crop], outputs=[input_image])
|
324 |
input_image_path.submit(fn=update_and_resize_image, inputs=[input_image_path, height_slider, width_slider, center_crop], outputs=[input_image])
|
|
|
343 |
],
|
344 |
outputs=[result_video]
|
345 |
)
|
346 |
+
|
347 |
|
348 |
return demo
|
349 |
|
example/example_01.png
ADDED
Git LFS Details
|
example/example_02.png
ADDED
Git LFS Details
|
example/example_03.png
ADDED
Git LFS Details
|
example/example_04.png
ADDED
Git LFS Details
|