Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Finish documenting the API endpoints
Browse files- server/main.py +78 -75
- server/model_api.py +4 -0
server/main.py
CHANGED
@@ -8,7 +8,7 @@ import utils.path_fixes as pf
|
|
8 |
from utils.f import ifnone
|
9 |
|
10 |
from data_processing import from_model
|
11 |
-
from
|
12 |
|
13 |
app = connexion.FlaskApp(__name__, static_folder="client/dist", specification_dir=".")
|
14 |
flask_app = app.app
|
@@ -36,10 +36,24 @@ def send_static_client(path):
|
|
36 |
## CONNEXION API ##
|
37 |
# ======================================================================
|
38 |
def get_model_details(**request):
|
39 |
-
model
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
info = deets.
|
43 |
nlayers = info.num_hidden_layers
|
44 |
nheads = info.num_attention_heads
|
45 |
|
@@ -53,9 +67,36 @@ def get_model_details(**request):
|
|
53 |
"payload": payload_out,
|
54 |
}
|
55 |
|
56 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
model = request["model"]
|
58 |
-
details =
|
59 |
|
60 |
sentence = request["sentence"]
|
61 |
layer = int(request["layer"])
|
@@ -69,17 +110,42 @@ def get_attention_and_meta(**request):
|
|
69 |
"payload": payload_out
|
70 |
}
|
71 |
|
72 |
-
|
73 |
def update_masked_attention(**request):
|
74 |
-
"""
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
"""
|
79 |
payload = request["payload"]
|
80 |
|
81 |
model = payload['model']
|
82 |
-
details =
|
83 |
|
84 |
tokens = payload["tokens"]
|
85 |
sentence = payload["sentence"]
|
@@ -101,69 +167,6 @@ def update_masked_attention(**request):
|
|
101 |
"payload": payload_out,
|
102 |
}
|
103 |
|
104 |
-
|
105 |
-
def nearest_embedding_search(**request):
|
106 |
-
"""Return the token text and the metadata in JSON"""
|
107 |
-
model = request["model"]
|
108 |
-
corpus = request["corpus"]
|
109 |
-
|
110 |
-
try:
|
111 |
-
details = from_pretrained(model)
|
112 |
-
except KeyError as e:
|
113 |
-
return {'status': 405, "payload": None}
|
114 |
-
|
115 |
-
try:
|
116 |
-
cc = from_model(model, corpus)
|
117 |
-
except FileNotFoundError as e:
|
118 |
-
return {
|
119 |
-
"status": 406,
|
120 |
-
"payload": None
|
121 |
-
}
|
122 |
-
|
123 |
-
q = np.array(request["embedding"]).reshape((1, -1)).astype(np.float32)
|
124 |
-
layer = int(request["layer"])
|
125 |
-
heads = list(map(int, list(set(request["heads"]))))
|
126 |
-
k = int(request["k"])
|
127 |
-
|
128 |
-
out = cc.search_embeddings(layer, q, k)
|
129 |
-
|
130 |
-
payload_out = [o.to_json(layer, heads) for o in out]
|
131 |
-
|
132 |
-
return {
|
133 |
-
"status": 200,
|
134 |
-
"payload": payload_out
|
135 |
-
}
|
136 |
-
|
137 |
-
|
138 |
-
def nearest_context_search(**request):
|
139 |
-
"""Return the token text and the metadata in JSON"""
|
140 |
-
model = request["model"]
|
141 |
-
corpus = request["corpus"]
|
142 |
-
print("CORPUS: ", corpus)
|
143 |
-
|
144 |
-
try:
|
145 |
-
details = from_pretrained(model)
|
146 |
-
except KeyError as e:
|
147 |
-
return {'status': 405, "payload": None}
|
148 |
-
|
149 |
-
try:
|
150 |
-
cc = from_model(model, corpus)
|
151 |
-
except FileNotFoundError as e:
|
152 |
-
return {'status': 406, "payload": None}
|
153 |
-
|
154 |
-
q = np.array(request["context"]).reshape((1, -1)).astype(np.float32)
|
155 |
-
layer = int(request["layer"])
|
156 |
-
heads = list(map(int, list(set(request["heads"]))))
|
157 |
-
k = int(request["k"])
|
158 |
-
|
159 |
-
out = cc.search_contexts(layer, heads, q, k)
|
160 |
-
payload_out = [o.to_json(layer, heads) for o in out]
|
161 |
-
|
162 |
-
return {
|
163 |
-
"status": 200,
|
164 |
-
"payload": payload_out,
|
165 |
-
}
|
166 |
-
|
167 |
app.add_api("swagger.yaml")
|
168 |
|
169 |
# Setup code
|
|
|
8 |
from utils.f import ifnone
|
9 |
|
10 |
from data_processing import from_model
|
11 |
+
from model_api import get_details
|
12 |
|
13 |
app = connexion.FlaskApp(__name__, static_folder="client/dist", specification_dir=".")
|
14 |
flask_app = app.app
|
|
|
36 |
## CONNEXION API ##
|
37 |
# ======================================================================
|
38 |
def get_model_details(**request):
|
39 |
+
"""Get important information about a model, like the number of layers and heads
|
40 |
+
|
41 |
+
Args:
|
42 |
+
request['model']: The model name
|
43 |
+
|
44 |
+
Returns:
|
45 |
+
{
|
46 |
+
status: 200,
|
47 |
+
payload: {
|
48 |
+
nlayers (int)
|
49 |
+
nheads (int)
|
50 |
+
}
|
51 |
+
}
|
52 |
+
"""
|
53 |
+
mname = request['model']
|
54 |
+
deets = get_details(mname)
|
55 |
|
56 |
+
info = deets.config
|
57 |
nlayers = info.num_hidden_layers
|
58 |
nheads = info.num_attention_heads
|
59 |
|
|
|
67 |
"payload": payload_out,
|
68 |
}
|
69 |
|
70 |
+
def get_attentions_and_preds(**request):
|
71 |
+
"""For a sentence, at a layer, get the attentions and predictions
|
72 |
+
|
73 |
+
Args:
|
74 |
+
request['model']: Model name
|
75 |
+
request['sentence']: Sentence to get the attentions for
|
76 |
+
request['layer']: Which layer to extract from
|
77 |
+
|
78 |
+
Returns:
|
79 |
+
{
|
80 |
+
status: 200
|
81 |
+
payload: {
|
82 |
+
aa: {
|
83 |
+
att: Array((nheads, ntoks, ntoks))
|
84 |
+
left: [{
|
85 |
+
text (str),
|
86 |
+
topk_words (List[str]),
|
87 |
+
topk_probs (List[float])
|
88 |
+
}, ...]
|
89 |
+
right: [{
|
90 |
+
text (str),
|
91 |
+
topk_words (List[str]),
|
92 |
+
topk_probs (List[float])
|
93 |
+
}, ...]
|
94 |
+
}
|
95 |
+
}
|
96 |
+
}
|
97 |
+
"""
|
98 |
model = request["model"]
|
99 |
+
details = get_details(model)
|
100 |
|
101 |
sentence = request["sentence"]
|
102 |
layer = int(request["layer"])
|
|
|
110 |
"payload": payload_out
|
111 |
}
|
112 |
|
|
|
113 |
def update_masked_attention(**request):
|
114 |
+
"""From tokens and indices of what should be masked, get the attentions and predictions
|
115 |
+
|
116 |
+
payload = request['payload']
|
117 |
+
|
118 |
+
Args:
|
119 |
+
payload['model'] (str): Model name
|
120 |
+
payload['tokens'] (List[str]): Tokens to pass through the model
|
121 |
+
payload['sentence'] (str): Original sentence the tokens came from
|
122 |
+
payload['mask'] (List[int]): Which indices to mask
|
123 |
+
payload['layer'] (int): Which layer to extract information from
|
124 |
+
|
125 |
+
Returns:
|
126 |
+
{
|
127 |
+
status: 200
|
128 |
+
payload: {
|
129 |
+
aa: {
|
130 |
+
att: Array((nheads, ntoks, ntoks))
|
131 |
+
left: [{
|
132 |
+
text (str),
|
133 |
+
topk_words (List[str]),
|
134 |
+
topk_probs (List[float])
|
135 |
+
}, ...]
|
136 |
+
right: [{
|
137 |
+
text (str),
|
138 |
+
topk_words (List[str]),
|
139 |
+
topk_probs (List[float])
|
140 |
+
}, ...]
|
141 |
+
}
|
142 |
+
}
|
143 |
+
}
|
144 |
"""
|
145 |
payload = request["payload"]
|
146 |
|
147 |
model = payload['model']
|
148 |
+
details = get_details(model)
|
149 |
|
150 |
tokens = payload["tokens"]
|
151 |
sentence = payload["sentence"]
|
|
|
167 |
"payload": payload_out,
|
168 |
}
|
169 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
app.add_api("swagger.yaml")
|
171 |
|
172 |
# Setup code
|
server/model_api.py
CHANGED
@@ -6,6 +6,10 @@ from transformers import AutoConfig, AutoTokenizer, AutoModelWithLMHead, AutoMod
|
|
6 |
from transformer_formatter import TransformerOutputFormatter
|
7 |
from utils.f import delegates, pick, memoize
|
8 |
|
|
|
|
|
|
|
|
|
9 |
def get_model_tok(mname):
|
10 |
conf = AutoConfig.from_pretrained(mname, output_attentions=True, output_past=False)
|
11 |
tok = AutoTokenizer.from_pretrained(mname, config=conf)
|
|
|
6 |
from transformer_formatter import TransformerOutputFormatter
|
7 |
from utils.f import delegates, pick, memoize
|
8 |
|
9 |
+
@memoize
|
10 |
+
def get_details(mname):
|
11 |
+
return ModelDetails(mname)
|
12 |
+
|
13 |
def get_model_tok(mname):
|
14 |
conf = AutoConfig.from_pretrained(mname, output_attentions=True, output_past=False)
|
15 |
tok = AutoTokenizer.from_pretrained(mname, config=conf)
|