Update Space (evaluate main: d781f85c)
Browse files- text_duplicates.py +18 -10
text_duplicates.py
CHANGED
@@ -12,10 +12,13 @@
|
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
|
15 |
-
import evaluate
|
16 |
-
import datasets
|
17 |
-
from collections import Counter
|
18 |
import hashlib
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
logger = evaluate.logging.get_logger(__name__)
|
21 |
|
@@ -47,10 +50,13 @@ Examples:
|
|
47 |
|
48 |
# TODO: Add BibTeX citation
|
49 |
_CITATION = ""
|
|
|
|
|
50 |
def get_hash(example):
|
51 |
"""Get the hash of a string"""
|
52 |
return hashlib.md5(example.strip().encode("utf-8")).hexdigest()
|
53 |
|
|
|
54 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
55 |
class TextDuplicates(evaluate.Measurement):
|
56 |
"""This measurement returns the duplicate strings contained in the input(s)."""
|
@@ -64,19 +70,21 @@ class TextDuplicates(evaluate.Measurement):
|
|
64 |
citation=_CITATION,
|
65 |
inputs_description=_KWARGS_DESCRIPTION,
|
66 |
# This defines the format of each prediction and reference
|
67 |
-
features=datasets.Features(
|
68 |
-
|
69 |
-
|
|
|
|
|
70 |
)
|
71 |
|
72 |
-
def _compute(self, data, list_duplicates
|
73 |
"""Returns the duplicates contained in the input data and the number of times they are repeated."""
|
74 |
if list_duplicates == True:
|
75 |
logger.warning("This functionality can be memory-intensive for large datasets!")
|
76 |
n_dedup = len(set([get_hash(d) for d in data]))
|
77 |
c = Counter(data)
|
78 |
duplicates = {k: v for k, v in c.items() if v > 1}
|
79 |
-
return {"duplicate_fraction": 1 - (n_dedup/len(data)), "duplicates_list": duplicates}
|
80 |
else:
|
81 |
-
|
82 |
-
|
|
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
|
|
|
|
|
|
|
15 |
import hashlib
|
16 |
+
from collections import Counter
|
17 |
+
|
18 |
+
import datasets
|
19 |
+
|
20 |
+
import evaluate
|
21 |
+
|
22 |
|
23 |
logger = evaluate.logging.get_logger(__name__)
|
24 |
|
|
|
50 |
|
51 |
# TODO: Add BibTeX citation
|
52 |
_CITATION = ""
|
53 |
+
|
54 |
+
|
55 |
def get_hash(example):
|
56 |
"""Get the hash of a string"""
|
57 |
return hashlib.md5(example.strip().encode("utf-8")).hexdigest()
|
58 |
|
59 |
+
|
60 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
61 |
class TextDuplicates(evaluate.Measurement):
|
62 |
"""This measurement returns the duplicate strings contained in the input(s)."""
|
|
|
70 |
citation=_CITATION,
|
71 |
inputs_description=_KWARGS_DESCRIPTION,
|
72 |
# This defines the format of each prediction and reference
|
73 |
+
features=datasets.Features(
|
74 |
+
{
|
75 |
+
"data": datasets.Value("string"),
|
76 |
+
}
|
77 |
+
),
|
78 |
)
|
79 |
|
80 |
+
def _compute(self, data, list_duplicates=False):
|
81 |
"""Returns the duplicates contained in the input data and the number of times they are repeated."""
|
82 |
if list_duplicates == True:
|
83 |
logger.warning("This functionality can be memory-intensive for large datasets!")
|
84 |
n_dedup = len(set([get_hash(d) for d in data]))
|
85 |
c = Counter(data)
|
86 |
duplicates = {k: v for k, v in c.items() if v > 1}
|
87 |
+
return {"duplicate_fraction": 1 - (n_dedup / len(data)), "duplicates_list": duplicates}
|
88 |
else:
|
89 |
+
n_dedup = len(set([get_hash(d) for d in data]))
|
90 |
+
return {"duplicate_fraction": 1 - (n_dedup / len(data))}
|