import torch import streamlit as st from datasets import Dataset from torch.utils.data import DataLoader from transformers import ( AutoTokenizer, AutoModelForQuestionAnswering, pipeline, ) import pandas as pd ######################## ### Helper functions ### ######################## # Build trainer using model and tokenizer from Hugging Face repo @st.cache_resource(show_spinner=False) def get_pipeline(): """ Load model and tokenizer from 🤗 repo and build pipeline Parameters: None ----------- Returns: -------- qa_pipeline : transformers.QuestionAnsweringPipeline The question answering pipeline object """ repo_id = 'etweedy/roberta-base-squad-v2' qa_pipeline = pipeline( task = 'question-answering', model=repo_id, tokenizer=repo_id, handle_impossible_answer = True ) return qa_pipeline def fill_in_example(i): """ Function for context-question example button click """ st.session_state['response'] = '' st.session_state['question'] = ex_q[i] st.session_state['context'] = ex_c[i] def clear_boxes(): """ Function for field clear button click """ st.session_state['response'] = '' st.session_state['question'] = '' st.session_state['context'] = '' def get_examples(): """ Retrieve pre-made examples from a .csv file Parameters: None ----------- Returns: -------- questions, contexts : list, list Lists of examples of corresponding question-context pairs """ examples = pd.read_csv('examples.csv') questions = list(examples['question']) contexts = list(examples['context']) return questions, contexts ############# ### Setup ### ############# # Set mps or cuda device if available if torch.backends.mps.is_available(): device = "mps" elif torch.cuda.is_available(): device = "cuda" else: device = "cpu" # Initialize session state variables if 'response' not in st.session_state: st.session_state['response'] = '' if 'context' not in st.session_state: st.session_state['context'] = '' if 'question' not in st.session_state: st.session_state['question'] = '' # Retrieve stored model with st.spinner('Loading the model...'): qa_pipeline = get_pipeline() # Grab example question-context pairs from csv file ex_q, ex_c = get_examples() ################### ### App content ### ################### # Intro text st.header('RoBERTa Q&A model') st.markdown(''' This app demonstrates the answer-retrieval capabilities of a fine-tuned RoBERTa (Robustly optimized Bidirectional Encoder Representations from Transformers) model. ''') with st.expander('Click to read more about the model...'): st.markdown(''' * [Click here](https://huggingface.co/etweedy/roberta-base-squad-v2) to visit the Hugging Face model card for this fine-tuned model. * To create this model, the [RoBERTa base model](https://huggingface.co/roberta-base) was fine-tuned on Version 2 of [SQuAD (Stanford Question Answering Dataset)](https://huggingface.co/datasets/squad_v2), a dataset of context-question-answer triples. * The objective of the model is "extractive question answering", the task of retrieving the answer to the question from a given context text corpus. * SQuAD Version 2 incorporates the 100,000 samples from Version 1.1, along with 50,000 'unanswerable' questions, i.e. samples in the question cannot be answered using the context given. * The original base RoBERTa model was introduced in [this paper](https://arxiv.org/abs/1907.11692) and [this repository](https://github.com/facebookresearch/fairseq/tree/main/examples/roberta). Here's a citation for that base model: ```bibtex @article{DBLP:journals/corr/abs-1907-11692, author = {Yinhan Liu and Myle Ott and Naman Goyal and Jingfei Du and Mandar Joshi and Danqi Chen and Omer Levy and Mike Lewis and Luke Zettlemoyer and Veselin Stoyanov}, title = {RoBERTa: {A} Robustly Optimized {BERT} Pretraining Approach}, journal = {CoRR}, volume = {abs/1907.11692}, year = {2019}, url = {http://arxiv.org/abs/1907.11692}, archivePrefix = {arXiv}, eprint = {1907.11692}, timestamp = {Thu, 01 Aug 2019 08:59:33 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-1907-11692.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` ''') st.markdown(''' Please type or paste a context paragraph and question you'd like to ask about it. The model will attempt to answer the question, or otherwise will report that it cannot. Your results will appear below the question field when the model is finished running. Alternatively, you can try an example by clicking one of the buttons below: ''') # Generate containers in order example_container = st.container() input_container = st.container() response_container = st.container() ########################### ### Populate containers ### ########################### # Populate example button container with example_container: ex_cols = st.columns(len(ex_q)+1) for i in range(len(ex_q)): with ex_cols[i]: st.button( label = f'Try example {i+1}', key = f'ex_button_{i+1}', on_click = fill_in_example, args=(i,), ) with ex_cols[-1]: st.button( label = "Clear all fields", key = "clear_button", on_click = clear_boxes, ) # Populate user input container with input_container: with st.form(key='input_form',clear_on_submit=False): # Context input field context = st.text_area( label='Context', value=st.session_state['context'], key='context_field', label_visibility='hidden', placeholder='Enter your context paragraph here.', height=300, ) # Question input field question = st.text_input( label='Question', value=st.session_state['question'], key='question_field', label_visibility='hidden', placeholder='Enter your question here.', ) # Form submit button query_submitted = st.form_submit_button("Submit") if query_submitted: # update question, context in session state st.session_state['question'] = question st.session_state['context'] = context with st.spinner('Generating response...'): # Generate dictionary from inputs query = { 'context':st.session_state['context'], 'question':st.session_state['question'], } # Pass to QA pipeline response = qa_pipeline(**query) answer = response['answer'] confidence = response['score'] # Reformat empty answer to message if answer == '': answer = "I don't have an answer based on the context provided." # Update response in session state st.session_state['response'] = f""" Answer: {answer}\n Confidence: {confidence:.2%} """ # Display response with response_container: st.write(st.session_state['response'])