etweedy commited on
Commit
225f4af
·
1 Parent(s): 3241cee

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +105 -0
README.md CHANGED
@@ -11,3 +11,108 @@ license: apache-2.0
11
  ---
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  ---
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
14
+
15
+ This gradio app predicts digits using a convolutive neural network (CNN) that was trained on the MNIST hand-drawn digit data set:
16
+ @article{lecun2010mnist,
17
+ title={MNIST handwritten digit database},
18
+ author={LeCun, Yann and Cortes, Corinna and Burges, CJ},
19
+ journal={ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist},
20
+ volume={2},
21
+ year={2010}
22
+ }
23
+
24
+ The PyTorch network architecture:
25
+ CNN(
26
+ (conv1): Sequential(
27
+ (0): Conv2d(1, 16, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
28
+ (1): ReLU()
29
+ (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
30
+ )
31
+ (conv2): Sequential(
32
+ (0): Conv2d(16, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
33
+ (1): ReLU()
34
+ (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
35
+ )
36
+ (out): Linear(in_features=1568, out_features=10, bias=True)
37
+ )
38
+
39
+ The model was trained using cross entropy loss function, the Adam stochastic optimizer. Training was done for 5 epochs, using batch size of 64, and with a learning rate of 0.001. The loss and training accuracy record was as follows:
40
+
41
+ Epoch 1
42
+ -------------------------------
43
+ loss: 2.308622 [ 0/60000]
44
+ loss: 0.263496 [ 6400/60000]
45
+ loss: 0.153133 [12800/60000]
46
+ loss: 0.174262 [19200/60000]
47
+ loss: 0.065622 [25600/60000]
48
+ loss: 0.139496 [32000/60000]
49
+ loss: 0.064824 [38400/60000]
50
+ loss: 0.040185 [44800/60000]
51
+ loss: 0.147770 [51200/60000]
52
+ loss: 0.132756 [57600/60000]
53
+ Test Error:
54
+ Accuracy: 97.8%, Avg loss: 0.068824
55
+
56
+ Epoch 2
57
+ -------------------------------
58
+ loss: 0.081690 [ 0/60000]
59
+ loss: 0.140447 [ 6400/60000]
60
+ loss: 0.024672 [12800/60000]
61
+ loss: 0.021052 [19200/60000]
62
+ loss: 0.093074 [25600/60000]
63
+ loss: 0.057293 [32000/60000]
64
+ loss: 0.059690 [38400/60000]
65
+ loss: 0.041043 [44800/60000]
66
+ loss: 0.008444 [51200/60000]
67
+ loss: 0.023947 [57600/60000]
68
+ Test Error:
69
+ Accuracy: 98.8%, Avg loss: 0.037573
70
+
71
+ Epoch 3
72
+ -------------------------------
73
+ loss: 0.026763 [ 0/60000]
74
+ loss: 0.008322 [ 6400/60000]
75
+ loss: 0.004648 [12800/60000]
76
+ loss: 0.022180 [19200/60000]
77
+ loss: 0.026884 [25600/60000]
78
+ loss: 0.127719 [32000/60000]
79
+ loss: 0.029921 [38400/60000]
80
+ loss: 0.018033 [44800/60000]
81
+ loss: 0.020504 [51200/60000]
82
+ loss: 0.015732 [57600/60000]
83
+ Test Error:
84
+ Accuracy: 98.5%, Avg loss: 0.044061
85
+
86
+ Epoch 4
87
+ -------------------------------
88
+ loss: 0.001018 [ 0/60000]
89
+ loss: 0.047208 [ 6400/60000]
90
+ loss: 0.015693 [12800/60000]
91
+ loss: 0.025309 [19200/60000]
92
+ loss: 0.008418 [25600/60000]
93
+ loss: 0.047959 [32000/60000]
94
+ loss: 0.003479 [38400/60000]
95
+ loss: 0.049097 [44800/60000]
96
+ loss: 0.009243 [51200/60000]
97
+ loss: 0.033639 [57600/60000]
98
+ Test Error:
99
+ Accuracy: 98.8%, Avg loss: 0.036810
100
+
101
+ Epoch 5
102
+ -------------------------------
103
+ loss: 0.002880 [ 0/60000]
104
+ loss: 0.011252 [ 6400/60000]
105
+ loss: 0.102632 [12800/60000]
106
+ loss: 0.045496 [19200/60000]
107
+ loss: 0.007643 [25600/60000]
108
+ loss: 0.003103 [32000/60000]
109
+ loss: 0.093026 [38400/60000]
110
+ loss: 0.022969 [44800/60000]
111
+ loss: 0.027332 [51200/60000]
112
+ loss: 0.005514 [57600/60000]
113
+ Test Error:
114
+ Accuracy: 99.0%, Avg loss: 0.027122
115
+
116
+ Done!
117
+
118
+