Update README.md
Browse files
README.md
CHANGED
@@ -11,3 +11,108 @@ license: apache-2.0
|
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
14 |
+
|
15 |
+
This gradio app predicts digits using a convolutive neural network (CNN) that was trained on the MNIST hand-drawn digit data set:
|
16 |
+
@article{lecun2010mnist,
|
17 |
+
title={MNIST handwritten digit database},
|
18 |
+
author={LeCun, Yann and Cortes, Corinna and Burges, CJ},
|
19 |
+
journal={ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist},
|
20 |
+
volume={2},
|
21 |
+
year={2010}
|
22 |
+
}
|
23 |
+
|
24 |
+
The PyTorch network architecture:
|
25 |
+
CNN(
|
26 |
+
(conv1): Sequential(
|
27 |
+
(0): Conv2d(1, 16, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
|
28 |
+
(1): ReLU()
|
29 |
+
(2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
|
30 |
+
)
|
31 |
+
(conv2): Sequential(
|
32 |
+
(0): Conv2d(16, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
|
33 |
+
(1): ReLU()
|
34 |
+
(2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
|
35 |
+
)
|
36 |
+
(out): Linear(in_features=1568, out_features=10, bias=True)
|
37 |
+
)
|
38 |
+
|
39 |
+
The model was trained using cross entropy loss function, the Adam stochastic optimizer. Training was done for 5 epochs, using batch size of 64, and with a learning rate of 0.001. The loss and training accuracy record was as follows:
|
40 |
+
|
41 |
+
Epoch 1
|
42 |
+
-------------------------------
|
43 |
+
loss: 2.308622 [ 0/60000]
|
44 |
+
loss: 0.263496 [ 6400/60000]
|
45 |
+
loss: 0.153133 [12800/60000]
|
46 |
+
loss: 0.174262 [19200/60000]
|
47 |
+
loss: 0.065622 [25600/60000]
|
48 |
+
loss: 0.139496 [32000/60000]
|
49 |
+
loss: 0.064824 [38400/60000]
|
50 |
+
loss: 0.040185 [44800/60000]
|
51 |
+
loss: 0.147770 [51200/60000]
|
52 |
+
loss: 0.132756 [57600/60000]
|
53 |
+
Test Error:
|
54 |
+
Accuracy: 97.8%, Avg loss: 0.068824
|
55 |
+
|
56 |
+
Epoch 2
|
57 |
+
-------------------------------
|
58 |
+
loss: 0.081690 [ 0/60000]
|
59 |
+
loss: 0.140447 [ 6400/60000]
|
60 |
+
loss: 0.024672 [12800/60000]
|
61 |
+
loss: 0.021052 [19200/60000]
|
62 |
+
loss: 0.093074 [25600/60000]
|
63 |
+
loss: 0.057293 [32000/60000]
|
64 |
+
loss: 0.059690 [38400/60000]
|
65 |
+
loss: 0.041043 [44800/60000]
|
66 |
+
loss: 0.008444 [51200/60000]
|
67 |
+
loss: 0.023947 [57600/60000]
|
68 |
+
Test Error:
|
69 |
+
Accuracy: 98.8%, Avg loss: 0.037573
|
70 |
+
|
71 |
+
Epoch 3
|
72 |
+
-------------------------------
|
73 |
+
loss: 0.026763 [ 0/60000]
|
74 |
+
loss: 0.008322 [ 6400/60000]
|
75 |
+
loss: 0.004648 [12800/60000]
|
76 |
+
loss: 0.022180 [19200/60000]
|
77 |
+
loss: 0.026884 [25600/60000]
|
78 |
+
loss: 0.127719 [32000/60000]
|
79 |
+
loss: 0.029921 [38400/60000]
|
80 |
+
loss: 0.018033 [44800/60000]
|
81 |
+
loss: 0.020504 [51200/60000]
|
82 |
+
loss: 0.015732 [57600/60000]
|
83 |
+
Test Error:
|
84 |
+
Accuracy: 98.5%, Avg loss: 0.044061
|
85 |
+
|
86 |
+
Epoch 4
|
87 |
+
-------------------------------
|
88 |
+
loss: 0.001018 [ 0/60000]
|
89 |
+
loss: 0.047208 [ 6400/60000]
|
90 |
+
loss: 0.015693 [12800/60000]
|
91 |
+
loss: 0.025309 [19200/60000]
|
92 |
+
loss: 0.008418 [25600/60000]
|
93 |
+
loss: 0.047959 [32000/60000]
|
94 |
+
loss: 0.003479 [38400/60000]
|
95 |
+
loss: 0.049097 [44800/60000]
|
96 |
+
loss: 0.009243 [51200/60000]
|
97 |
+
loss: 0.033639 [57600/60000]
|
98 |
+
Test Error:
|
99 |
+
Accuracy: 98.8%, Avg loss: 0.036810
|
100 |
+
|
101 |
+
Epoch 5
|
102 |
+
-------------------------------
|
103 |
+
loss: 0.002880 [ 0/60000]
|
104 |
+
loss: 0.011252 [ 6400/60000]
|
105 |
+
loss: 0.102632 [12800/60000]
|
106 |
+
loss: 0.045496 [19200/60000]
|
107 |
+
loss: 0.007643 [25600/60000]
|
108 |
+
loss: 0.003103 [32000/60000]
|
109 |
+
loss: 0.093026 [38400/60000]
|
110 |
+
loss: 0.022969 [44800/60000]
|
111 |
+
loss: 0.027332 [51200/60000]
|
112 |
+
loss: 0.005514 [57600/60000]
|
113 |
+
Test Error:
|
114 |
+
Accuracy: 99.0%, Avg loss: 0.027122
|
115 |
+
|
116 |
+
Done!
|
117 |
+
|
118 |
+
|