Spaces:
Runtime error
Runtime error
""" | |
general utility functions for loading, saving, etc | |
""" | |
import os | |
from pathlib import Path | |
import pprint as pp | |
import re | |
import shutil # zipfile formats | |
from datetime import datetime | |
from os.path import basename | |
from os.path import getsize, join | |
import requests | |
from cleantext import clean | |
from natsort import natsorted | |
from symspellpy import SymSpell | |
import pandas as pd | |
from tqdm.auto import tqdm | |
def get_timestamp(): | |
return datetime.now().strftime("%b-%d-%Y_t-%H") | |
def correct_phrase_load(my_string: str): | |
""" | |
correct_phrase_load [basic / unoptimized implementation of SymSpell to correct a string] | |
Args: | |
my_string (str): [text to be corrected] | |
Returns: | |
[type]: [description] | |
""" | |
sym_spell = SymSpell(max_dictionary_edit_distance=2, prefix_length=7) | |
dictionary_path = ( | |
r"symspell_rsc/frequency_dictionary_en_82_765.txt" # from repo root | |
) | |
bigram_path = ( | |
r"symspell_rsc/frequency_bigramdictionary_en_243_342.txt" # from repo root | |
) | |
# term_index is the column of the term and count_index is the | |
# column of the term frequency | |
sym_spell.load_dictionary(dictionary_path, term_index=0, count_index=1) | |
sym_spell.load_bigram_dictionary(bigram_path, term_index=0, count_index=2) | |
# max edit distance per lookup (per single word, not per whole input string) | |
suggestions = sym_spell.lookup_compound( | |
clean(my_string), max_edit_distance=2, ignore_non_words=True | |
) | |
if len(suggestions) < 1: | |
return my_string | |
else: | |
first_result = suggestions[0] | |
return first_result._term | |
def fast_scandir(dirname: str): | |
""" | |
fast_scandir [an os.path-based means to return all subfolders in a given filepath] | |
Args: | |
dirname (str): [description] | |
Returns: | |
[list]: [description] | |
""" | |
subfolders = [f.path for f in os.scandir(dirname) if f.is_dir()] | |
for dirname in list(subfolders): | |
subfolders.extend(fast_scandir(dirname)) | |
return subfolders # list | |
def create_folder(directory: str): | |
os.makedirs(directory, exist_ok=True) | |
def chunks(lst: list, n: int): | |
""" | |
chunks - Yield successive n-sized chunks from lst | |
Args: | |
lst (list): [description] | |
n (int): [description] | |
Yields: | |
[type]: [description] | |
""" | |
for i in range(0, len(lst), n): | |
yield lst[i : i + n] | |
def chunky_pandas(my_df, num_chunks: int = 4): | |
""" | |
chunky_pandas [split dataframe into `num_chunks` equal chunks, return each inside a list] | |
Args: | |
my_df (pd.DataFrame): [description] | |
num_chunks (int, optional): [description]. Defaults to 4. | |
Returns: | |
[type]: [description] | |
""" | |
n = int(len(my_df) // num_chunks) | |
list_df = [my_df[i : i + n] for i in range(0, my_df.shape[0], n)] | |
return list_df | |
def load_dir_files( | |
directory: str, req_extension=".txt", return_type="list", verbose=False | |
): | |
""" | |
load_dir_files - an os.path based method of returning all files with extension `req_extension` in a given directory and subdirectories | |
Args: | |
directory (str): [description] | |
req_extension (str, optional): [description]. Defaults to ".txt". | |
return_type (str, optional): [description]. Defaults to "list". | |
verbose (bool, optional): [description]. Defaults to False. | |
Returns: | |
[type]: [description] | |
""" | |
appr_files = [] | |
# r=root, d=directories, f = files | |
for r, d, f in os.walk(directory): | |
for prefile in f: | |
if prefile.endswith(req_extension): | |
fullpath = os.path.join(r, prefile) | |
appr_files.append(fullpath) | |
appr_files = natsorted(appr_files) | |
if verbose: | |
print("A list of files in the {} directory are: \n".format(directory)) | |
if len(appr_files) < 10: | |
pp.pprint(appr_files) | |
else: | |
pp.pprint(appr_files[:10]) | |
print("\n and more. There are a total of {} files".format(len(appr_files))) | |
if return_type.lower() == "list": | |
return appr_files | |
else: | |
if verbose: | |
print("returning dictionary") | |
appr_file_dict = {} | |
for this_file in appr_files: | |
appr_file_dict[basename(this_file)] = this_file | |
return appr_file_dict | |
def URL_string_filter(text): | |
""" | |
URL_string_filter - filter out nonstandard "text" characters | |
Args: | |
text ([type]): [description] | |
Returns: | |
[str]: [description] | |
""" | |
custom_printable = ( | |
"0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ._" | |
) | |
filtered = "".join((filter(lambda i: i in custom_printable, text))) | |
return filtered | |
def getFilename_fromCd(cd): | |
if not cd: | |
return None | |
fname = re.findall("filename=(.+)", cd) | |
if len(fname) > 0: | |
output = fname[0] | |
elif cd.find("/"): | |
possible_fname = cd.rsplit("/", 1)[1] | |
output = URL_string_filter(possible_fname) | |
else: | |
output = None | |
return output | |
def get_zip_URL( | |
URLtoget: str, | |
extract_loc: str = None, | |
file_header: str = "dropboxexport_", | |
verbose: bool = False, | |
): | |
""" | |
get_zip_URL [summary] | |
Args: | |
URLtoget (str): [description] | |
extract_loc (str, optional): [description]. Defaults to None. | |
file_header (str, optional): [description]. Defaults to "dropboxexport_". | |
verbose (bool, optional): [description]. Defaults to False. | |
Returns: | |
[type]: [description] | |
""" | |
r = requests.get(URLtoget, allow_redirects=True) | |
names = getFilename_fromCd(r.headers.get("content-disposition")) | |
fixed_fnames = names.split(";") # split the multiple results | |
this_filename = file_header + URL_string_filter(fixed_fnames[0]) | |
# define paths and save the zip file | |
if extract_loc is None: | |
extract_loc = "dropbox_dl" | |
dl_place = join(os.getcwd(), extract_loc) | |
create_folder(dl_place) | |
save_loc = join(os.getcwd(), this_filename) | |
open(save_loc, "wb").write(r.content) | |
if verbose: | |
print("downloaded file size was {} MB".format(getsize(save_loc) / 1000000)) | |
# unpack the archive | |
shutil.unpack_archive(save_loc, extract_dir=dl_place) | |
if verbose: | |
print("extracted zip file - ", datetime.now()) | |
x = load_dir_files(dl_place, req_extension="", verbose=verbose) | |
# remove original | |
try: | |
os.remove(save_loc) | |
del save_loc | |
except: | |
print("unable to delete original zipfile - check if exists", datetime.now()) | |
print("finished extracting zip - ", datetime.now()) | |
return dl_place | |
def merge_dataframes(data_dir: str, ext=".xlsx", verbose=False): | |
""" | |
merge_dataframes - given a filepath, loads and attempts to merge all files as dataframes | |
Args: | |
data_dir (str): [root directory to search in] | |
ext (str, optional): [anticipate file extension for the dataframes ]. Defaults to '.xlsx'. | |
Returns: | |
pd.DataFrame(): merged dataframe | |
""" | |
src = Path(data_dir) | |
src_str = str(src.resolve()) | |
mrg_df = pd.DataFrame() | |
all_reports = load_dir_files(directory=src_str, req_extension=ext, verbose=verbose) | |
failed = [] | |
for df_path in tqdm(all_reports, total=len(all_reports), desc="joining data..."): | |
try: | |
this_df = pd.read_excel(df_path).convert_dtypes() | |
mrg_df = pd.concat([mrg_df, this_df], axis=0) | |
except: | |
short_p = os.path.basename(df_path) | |
print( | |
f"WARNING - file with extension {ext} and name {short_p} could not be read." | |
) | |
failed.append(short_p) | |
if len(failed) > 0: | |
print("failed to merge {} files, investigate as needed") | |
if verbose: | |
pp.pprint(mrg_df.info(True)) | |
return mrg_df | |