naija_senti / app.py
eskayML's picture
Update app.py
e52e8cc
raw
history blame
1.16 kB
from transformers import AutoModelForSequenceClassification
from transformers import AutoTokenizer
import numpy as np
from scipy.special import softmax
MODEL = "Davlan/naija-twitter-sentiment-afriberta-large"
tokenizer = AutoTokenizer.from_pretrained(MODEL)
# PT
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
def get_senti(text):
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
scores = output[0][0].detach().numpy()
scores = softmax(scores)
id2label = {0:"positive✅", 1:"neutral😐", 2:"negative❌"}
ranking = np.argsort(scores)
ranking = ranking[::-1]
out = []
for i in range(scores.shape[0]):
l = id2label[ranking[i]]
s = scores[ranking[i]]
out.append(f"{i+1}) {l} {np.round(float(s), 4)}")
out.append('\nNOTE: "The higher the values, the higher the sentiment for that class & vice-versa"')
return "\n".join(out)
import gradio as gr
demo = gr.Interface(
fn=get_senti,
inputs=gr.Textbox(lines=2, placeholder="Enter Words Here (Igbo, Yoruba, Hausa Pidgin)..."),
outputs="text",
)
demo.launch()