Spaces:
Running
Running
Avijit Ghosh
commited on
Commit
·
0d25da0
1
Parent(s):
87e696f
added code to all tabs
Browse files- app.py +35 -13
- configs/ieat.yaml +1 -2
app.py
CHANGED
@@ -129,7 +129,7 @@ def showmodal(evt: gr.SelectData):
|
|
129 |
screenshots = itemdic['Screenshots']
|
130 |
if isinstance(screenshots, list):
|
131 |
if len(screenshots) > 0:
|
132 |
-
gallery = gr.Gallery(screenshots, visible=True, height=
|
133 |
|
134 |
return [modal, titlemd, authormd, affiliationmd, tagsmd, abstractmd, whatisbeingmd, methodmd, considerationsmd, modelsmd, datasetmd, metricsmd, gallery]
|
135 |
|
@@ -184,16 +184,16 @@ The following categories are high-level, non-exhaustive, and present a synthesis
|
|
184 |
tagsmd = gr.Markdown(visible=False)
|
185 |
abstractmd = gr.Markdown(visible=False)
|
186 |
gr.Markdown("""## Construct Validity<br>
|
187 |
-
|
188 |
whatisbeingmd = gr.Markdown(visible=False)
|
189 |
methodmd = gr.Markdown(visible=False)
|
190 |
considerationsmd = gr.Markdown(visible=False)
|
191 |
gr.Markdown("""## Resources<br>
|
192 |
-
|
193 |
modelsmd = gr.Markdown(visible=False)
|
194 |
datasetmd = gr.Markdown(visible=False)
|
195 |
gr.Markdown("""## Results<br>
|
196 |
-
|
197 |
metricsmd = gr.Markdown(visible=False)
|
198 |
gallery = gr.Gallery(visible=False)
|
199 |
table_filtered.select(showmodal, None, [modal, titlemd, authormd, affiliationmd, tagsmd, abstractmd, whatisbeingmd, methodmd, considerationsmd, modelsmd, datasetmd, metricsmd, gallery])
|
@@ -202,10 +202,10 @@ The following categories are high-level, non-exhaustive, and present a synthesis
|
|
202 |
|
203 |
with gr.TabItem("Cultural Values/Sensitive Content"):
|
204 |
fulltable = globaldf[globaldf['Group'] == 'CulturalEvals']
|
205 |
-
fulltable = fulltable[['Modality','Level', 'Suggested Evaluation', 'What it is evaluating', '
|
206 |
|
207 |
-
gr.Markdown("""
|
208 |
-
|
209 |
""")
|
210 |
with gr.Row():
|
211 |
modality_filter = gr.CheckboxGroup(["Text", "Image", "Audio", "Video"],
|
@@ -230,13 +230,24 @@ The following categories are high-level, non-exhaustive, and present a synthesis
|
|
230 |
with Modal(visible=False) as modal:
|
231 |
titlemd = gr.Markdown(visible=False)
|
232 |
authormd = gr.Markdown(visible=False)
|
|
|
233 |
tagsmd = gr.Markdown(visible=False)
|
234 |
abstractmd = gr.Markdown(visible=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
modelsmd = gr.Markdown(visible=False)
|
236 |
datasetmd = gr.Markdown(visible=False)
|
|
|
|
|
|
|
237 |
gallery = gr.Gallery(visible=False)
|
238 |
-
table_filtered.select(showmodal, None, [modal, titlemd, authormd, tagsmd, abstractmd, modelsmd, datasetmd, gallery])
|
239 |
-
|
240 |
|
241 |
|
242 |
# with gr.TabItem("Disparate Performance"):
|
@@ -245,10 +256,10 @@ The following categories are high-level, non-exhaustive, and present a synthesis
|
|
245 |
|
246 |
with gr.TabItem("Privacy/Data Protection"):
|
247 |
fulltable = globaldf[globaldf['Group'] == 'PrivacyEvals']
|
248 |
-
fulltable = fulltable[['Modality','Level', 'Suggested Evaluation', 'What it is evaluating', '
|
249 |
|
250 |
-
gr.Markdown("""
|
251 |
-
|
252 |
""")
|
253 |
with gr.Row():
|
254 |
modality_filter = gr.CheckboxGroup(["Text", "Image", "Audio", "Video"],
|
@@ -273,12 +284,23 @@ The following categories are high-level, non-exhaustive, and present a synthesis
|
|
273 |
with Modal(visible=False) as modal:
|
274 |
titlemd = gr.Markdown(visible=False)
|
275 |
authormd = gr.Markdown(visible=False)
|
|
|
276 |
tagsmd = gr.Markdown(visible=False)
|
277 |
abstractmd = gr.Markdown(visible=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
modelsmd = gr.Markdown(visible=False)
|
279 |
datasetmd = gr.Markdown(visible=False)
|
|
|
|
|
|
|
280 |
gallery = gr.Gallery(visible=False)
|
281 |
-
table_filtered.select(showmodal, None, [modal, titlemd, authormd, tagsmd, abstractmd, modelsmd, datasetmd, gallery])
|
282 |
|
283 |
# with gr.TabItem("Financial Costs"):
|
284 |
# with gr.Row():
|
|
|
129 |
screenshots = itemdic['Screenshots']
|
130 |
if isinstance(screenshots, list):
|
131 |
if len(screenshots) > 0:
|
132 |
+
gallery = gr.Gallery(screenshots, visible=True, height=450, object_fit="scale-down", interactive=False, show_share_button=False)
|
133 |
|
134 |
return [modal, titlemd, authormd, affiliationmd, tagsmd, abstractmd, whatisbeingmd, methodmd, considerationsmd, modelsmd, datasetmd, metricsmd, gallery]
|
135 |
|
|
|
184 |
tagsmd = gr.Markdown(visible=False)
|
185 |
abstractmd = gr.Markdown(visible=False)
|
186 |
gr.Markdown("""## Construct Validity<br>
|
187 |
+
##### <em>How well it measures the concept it was designed to evaluate</em>""", visible=True)
|
188 |
whatisbeingmd = gr.Markdown(visible=False)
|
189 |
methodmd = gr.Markdown(visible=False)
|
190 |
considerationsmd = gr.Markdown(visible=False)
|
191 |
gr.Markdown("""## Resources<br>
|
192 |
+
##### <em>What you need to do this evaluation</em>""", visible=True)
|
193 |
modelsmd = gr.Markdown(visible=False)
|
194 |
datasetmd = gr.Markdown(visible=False)
|
195 |
gr.Markdown("""## Results<br>
|
196 |
+
##### <em>Available evaluation results</em>""", visible=True)
|
197 |
metricsmd = gr.Markdown(visible=False)
|
198 |
gallery = gr.Gallery(visible=False)
|
199 |
table_filtered.select(showmodal, None, [modal, titlemd, authormd, affiliationmd, tagsmd, abstractmd, whatisbeingmd, methodmd, considerationsmd, modelsmd, datasetmd, metricsmd, gallery])
|
|
|
202 |
|
203 |
with gr.TabItem("Cultural Values/Sensitive Content"):
|
204 |
fulltable = globaldf[globaldf['Group'] == 'CulturalEvals']
|
205 |
+
fulltable = fulltable[['Modality','Level', 'Suggested Evaluation', 'What it is evaluating', 'Link']]
|
206 |
|
207 |
+
gr.Markdown("""
|
208 |
+
Generative AI systems can perpetuate harmful biases from various sources, including systemic, human, and statistical biases. These biases, also known as "fairness" considerations, can manifest in the final system due to choices made throughout the development process. They include harmful associations and stereotypes related to protected classes, such as race, gender, and sexuality. Evaluating biases involves assessing correlations, co-occurrences, sentiment, and toxicity across different modalities, both within the model itself and in the outputs of downstream tasks.
|
209 |
""")
|
210 |
with gr.Row():
|
211 |
modality_filter = gr.CheckboxGroup(["Text", "Image", "Audio", "Video"],
|
|
|
230 |
with Modal(visible=False) as modal:
|
231 |
titlemd = gr.Markdown(visible=False)
|
232 |
authormd = gr.Markdown(visible=False)
|
233 |
+
affiliationmd = gr.Markdown(visible=False)
|
234 |
tagsmd = gr.Markdown(visible=False)
|
235 |
abstractmd = gr.Markdown(visible=False)
|
236 |
+
gr.Markdown("""## Construct Validity<br>
|
237 |
+
##### <em>How well it measures the concept it was designed to evaluate</em>""", visible=True)
|
238 |
+
whatisbeingmd = gr.Markdown(visible=False)
|
239 |
+
methodmd = gr.Markdown(visible=False)
|
240 |
+
considerationsmd = gr.Markdown(visible=False)
|
241 |
+
gr.Markdown("""## Resources<br>
|
242 |
+
##### <em>What you need to do this evaluation</em>""", visible=True)
|
243 |
modelsmd = gr.Markdown(visible=False)
|
244 |
datasetmd = gr.Markdown(visible=False)
|
245 |
+
gr.Markdown("""## Results<br>
|
246 |
+
##### <em>Available evaluation results</em>""", visible=True)
|
247 |
+
metricsmd = gr.Markdown(visible=False)
|
248 |
gallery = gr.Gallery(visible=False)
|
249 |
+
table_filtered.select(showmodal, None, [modal, titlemd, authormd, affiliationmd, tagsmd, abstractmd, whatisbeingmd, methodmd, considerationsmd, modelsmd, datasetmd, metricsmd, gallery])
|
250 |
+
|
251 |
|
252 |
|
253 |
# with gr.TabItem("Disparate Performance"):
|
|
|
256 |
|
257 |
with gr.TabItem("Privacy/Data Protection"):
|
258 |
fulltable = globaldf[globaldf['Group'] == 'PrivacyEvals']
|
259 |
+
fulltable = fulltable[['Modality','Level', 'Suggested Evaluation', 'What it is evaluating', 'Link']]
|
260 |
|
261 |
+
gr.Markdown("""
|
262 |
+
Generative AI systems can perpetuate harmful biases from various sources, including systemic, human, and statistical biases. These biases, also known as "fairness" considerations, can manifest in the final system due to choices made throughout the development process. They include harmful associations and stereotypes related to protected classes, such as race, gender, and sexuality. Evaluating biases involves assessing correlations, co-occurrences, sentiment, and toxicity across different modalities, both within the model itself and in the outputs of downstream tasks.
|
263 |
""")
|
264 |
with gr.Row():
|
265 |
modality_filter = gr.CheckboxGroup(["Text", "Image", "Audio", "Video"],
|
|
|
284 |
with Modal(visible=False) as modal:
|
285 |
titlemd = gr.Markdown(visible=False)
|
286 |
authormd = gr.Markdown(visible=False)
|
287 |
+
affiliationmd = gr.Markdown(visible=False)
|
288 |
tagsmd = gr.Markdown(visible=False)
|
289 |
abstractmd = gr.Markdown(visible=False)
|
290 |
+
gr.Markdown("""## Construct Validity<br>
|
291 |
+
##### <em>How well it measures the concept it was designed to evaluate</em>""", visible=True)
|
292 |
+
whatisbeingmd = gr.Markdown(visible=False)
|
293 |
+
methodmd = gr.Markdown(visible=False)
|
294 |
+
considerationsmd = gr.Markdown(visible=False)
|
295 |
+
gr.Markdown("""## Resources<br>
|
296 |
+
##### <em>What you need to do this evaluation</em>""", visible=True)
|
297 |
modelsmd = gr.Markdown(visible=False)
|
298 |
datasetmd = gr.Markdown(visible=False)
|
299 |
+
gr.Markdown("""## Results<br>
|
300 |
+
##### <em>Available evaluation results</em>""", visible=True)
|
301 |
+
metricsmd = gr.Markdown(visible=False)
|
302 |
gallery = gr.Gallery(visible=False)
|
303 |
+
table_filtered.select(showmodal, None, [modal, titlemd, authormd, affiliationmd, tagsmd, abstractmd, whatisbeingmd, methodmd, considerationsmd, modelsmd, datasetmd, metricsmd, gallery])
|
304 |
|
305 |
# with gr.TabItem("Financial Costs"):
|
306 |
# with gr.Row():
|
configs/ieat.yaml
CHANGED
@@ -7,8 +7,7 @@ Datasets: .nan
|
|
7 |
Group: BiasEvals
|
8 |
Hashtags: .nan
|
9 |
Link: Image Representations Learned With Unsupervised Pre-Training Contain Human-like
|
10 |
-
Biases
|
11 |
-
Transparency
|
12 |
Modality: Image
|
13 |
Screenshots: []
|
14 |
Suggested Evaluation: Image Embedding Association Test (iEAT)
|
|
|
7 |
Group: BiasEvals
|
8 |
Hashtags: .nan
|
9 |
Link: Image Representations Learned With Unsupervised Pre-Training Contain Human-like
|
10 |
+
Biases
|
|
|
11 |
Modality: Image
|
12 |
Screenshots: []
|
13 |
Suggested Evaluation: Image Embedding Association Test (iEAT)
|