sanchit-gandhi
commited on
Commit
·
a8cda10
1
Parent(s):
c327bbb
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import soundfile as sf
|
5 |
+
import torch
|
6 |
+
from gradio_client import Client
|
7 |
+
from huggingface_hub import Repository
|
8 |
+
from pandas import read_csv
|
9 |
+
|
10 |
+
from transformers import pipeline
|
11 |
+
|
12 |
+
|
13 |
+
# load the results file from the private repo
|
14 |
+
USERNAMES_DATASET_ID = "huggingface-course/audio-course-u7-hands-on"
|
15 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
16 |
+
|
17 |
+
usernames_url = os.path.join("https://huggingface.co/datasets", USERNAMES_DATASET_ID)
|
18 |
+
|
19 |
+
usernames_repo = Repository(local_dir="usernames", clone_from=usernames_url, use_auth_token=HF_TOKEN)
|
20 |
+
usernames_repo.git_pull()
|
21 |
+
|
22 |
+
CSV_RESULTS_FILE = os.path.join("usernames", "usernames.csv")
|
23 |
+
all_results = read_csv(CSV_RESULTS_FILE)
|
24 |
+
|
25 |
+
# load the LID checkpoint
|
26 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
27 |
+
pipe = pipeline("audio-classification", model="facebook/mms-lid-126", device=device)
|
28 |
+
|
29 |
+
# define some constants
|
30 |
+
TITLE = "🤗 Audio Transformers Course: Unit 7 Assessment"
|
31 |
+
DESCRIPTION = """
|
32 |
+
Check that you have successfully completed the hands-on exercise for Unit 7 of the 🤗 Audio Transformers Course by submitting your demo to this Space.
|
33 |
+
|
34 |
+
As a reminder, you should start with the template Space provided at [`course-demos/speech-to-speech-translation`](https://huggingface.co/spaces/course-demos/speech-to-speech-translation),
|
35 |
+
and update the Space to translate from any language X to a **non-English** language Y.
|
36 |
+
|
37 |
+
Your demo should take as input an audio file, and return as output another audio file, matching the signature of the
|
38 |
+
[`speech_to_speech_translation`](https://huggingface.co/spaces/course-demos/speech-to-speech-translation/blob/3946ba6705a6632a63de8672ac52a482ab74b3fc/app.py#L35)
|
39 |
+
function in the template demo.
|
40 |
+
|
41 |
+
To submit your demo for assessment, give the repo id or URL to your demo. For the template demo, this would be `course-demos/speech-to-speech-translation`.
|
42 |
+
|
43 |
+
This Space will submit a test file to your demo, and check that the output is non-English audio. If your demo successfully
|
44 |
+
returns an audio file, and this audio file is classified as being non-English, you will pass the demo and get a green
|
45 |
+
tick next to your name! ✅
|
46 |
+
|
47 |
+
If you experience any issues with using this checker, [open an issue](https://huggingface.co/spaces/huggingface-course/audio-course-u7-assessment/discussions/new)
|
48 |
+
on this Space and tag [`@sanchit-gandhi`](https://huggingface.co/sanchit-gandhi).
|
49 |
+
"""
|
50 |
+
THRESHOLD = 0.5
|
51 |
+
PASS_MESSAGE = "Congratulations! Your demo passed the assessment!"
|
52 |
+
|
53 |
+
|
54 |
+
def verify_demo(repo_id):
|
55 |
+
if "/" not in repo_id:
|
56 |
+
raise gr.Error(f"Ensure you pass a valid repo id to the assessor, got `{repo_id}`")
|
57 |
+
|
58 |
+
split_repo_id = repo_id.split("/")
|
59 |
+
user_name = split_repo_id[-2]
|
60 |
+
|
61 |
+
if len(split_repo_id) > 2:
|
62 |
+
repo_id = "/".join(split_repo_id[-2:])
|
63 |
+
|
64 |
+
if user_name in all_results["username"]:
|
65 |
+
raise gr.Error(f"Username {user_name} has already passed the assessment!")
|
66 |
+
|
67 |
+
try:
|
68 |
+
client = Client(repo_id, hf_token=HF_TOKEN)
|
69 |
+
except Exception as e:
|
70 |
+
raise gr.Error(f"Error with loading Space: {e}")
|
71 |
+
|
72 |
+
try:
|
73 |
+
audio_file = client.predict("test.wav", api_name="/predict")
|
74 |
+
except Exception as e:
|
75 |
+
raise gr.Error(
|
76 |
+
f"Error with querying Space, ensure your Space takes an audio file as input and returns an audio as output: {e}"
|
77 |
+
)
|
78 |
+
|
79 |
+
audio, sampling_rate = sf.read(audio_file)
|
80 |
+
|
81 |
+
language_prediction = pipe({"array": audio, "sampling_rate": sampling_rate})
|
82 |
+
|
83 |
+
label_outputs = {}
|
84 |
+
for pred in language_prediction:
|
85 |
+
label_outputs[pred["label"]] = pred["score"]
|
86 |
+
|
87 |
+
top_prediction = language_prediction[0]
|
88 |
+
|
89 |
+
if top_prediction["score"] < THRESHOLD:
|
90 |
+
raise gr.Error(
|
91 |
+
f"Model made random predictions - predicted {top_prediction['label']} with probability {top_prediction['score']}"
|
92 |
+
)
|
93 |
+
elif top_prediction["label"] == "eng":
|
94 |
+
raise gr.Error(
|
95 |
+
"Model generated an English audio - ensure the model is set to generate audio in a non-English langauge, e.g. Dutch"
|
96 |
+
)
|
97 |
+
|
98 |
+
# save and upload new evaluated usernames
|
99 |
+
all_results.loc[len(all_results)] = {"username": user_name}
|
100 |
+
all_results.to_csv(CSV_RESULTS_FILE, index=False)
|
101 |
+
usernames_repo.push_to_hub()
|
102 |
+
|
103 |
+
return PASS_MESSAGE, (sampling_rate, audio), label_outputs
|
104 |
+
|
105 |
+
|
106 |
+
demo = gr.Interface(
|
107 |
+
fn=verify_demo,
|
108 |
+
inputs=gr.Textbox(placeholder="course-demos/speech-to-speech-translation", label="Repo id or URL of your demo"),
|
109 |
+
outputs=[
|
110 |
+
gr.Textbox(label="Status"),
|
111 |
+
gr.Audio(label="Generated Speech", type="numpy"),
|
112 |
+
gr.Label(label="Language prediction"),
|
113 |
+
],
|
114 |
+
title=TITLE,
|
115 |
+
description=DESCRIPTION,
|
116 |
+
)
|
117 |
+
demo.launch()
|