eogreen commited on
Commit
4eb5a0b
·
verified ·
1 Parent(s): a73b8d9

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -16
app.py CHANGED
@@ -21,11 +21,8 @@ os.environ['OPENAI_API_KEY'] = "gl-U2FsdGVkX1+0bNWD6YsVLZUYsn0m1WfLxUzrP0xUFbtW
21
  os.environ["OPENAI_BASE_URL"] = "https://aibe.mygreatlearning.com/openai/v1" # e.g. "https://aibe.mygreatlearning.com/openai/v1";
22
 
23
  model_name = 'gpt-4o-mini' # e.g. 'gpt-3.5-turbo'
24
- # llm_client = OpenAI()
25
- # Initialize the ChatOpenAI model
26
  llm = ChatOpenAI(model_name=model_name, temperature=0) # Set temperature to 0 for deterministic output
27
- # Create a HumanMessage
28
- #user_message = HumanMessage(content="What's the weather like today?")
29
 
30
  # Define the embedding model and the vectorstore
31
  embedding_model = SentenceTransformerEmbeddings(model_name='thenlper/gte-large')
@@ -121,13 +118,6 @@ def llm_query(user_input,company):
121
  # Call the chat model with the message
122
  response = llm(prompt)
123
 
124
- # response = llm_client.chat.completions.create(
125
- # model=model_name,
126
- # messages=prompt,
127
- # temperature=0
128
- # )
129
-
130
- #llm_response = response.choices[0].message.content.strip()
131
  llm_response = response.content.strip()
132
 
133
  except Exception as e:
@@ -137,9 +127,7 @@ def llm_query(user_input,company):
137
  print(llm_response)
138
 
139
  # While the prediction is made, log both the inputs and outputs to a local log file
140
- # While writing to the log file, ensure that the commit scheduler is locked to avoid parallel
141
- # access
142
-
143
  with scheduler.lock:
144
  with log_file.open("a") as f:
145
  f.write(json.dumps(
@@ -159,7 +147,7 @@ company = gr.Radio(label='Company:', choices=["aws", "google", "IBM", "Meta", "m
159
 
160
  # Create Gradio interface
161
  # For the inputs parameter of Interface provide [textbox,company] with outputs parameter of Interface provide prediction
162
- demo = gr.Interface(fn=llm_query, inputs=[textbox, company], outputs="text", title="Financial Analyst Assistant", description="Ask questions about the financial performance of AWS, Google, IBM, Meta, and Microsoft based on their 10-K reports.\n\nPlease enter a question below.", theme=gr.themes.Soft())
163
 
164
  demo.queue()
165
- demo.launch()
 
21
  os.environ["OPENAI_BASE_URL"] = "https://aibe.mygreatlearning.com/openai/v1" # e.g. "https://aibe.mygreatlearning.com/openai/v1";
22
 
23
  model_name = 'gpt-4o-mini' # e.g. 'gpt-3.5-turbo'
24
+
 
25
  llm = ChatOpenAI(model_name=model_name, temperature=0) # Set temperature to 0 for deterministic output
 
 
26
 
27
  # Define the embedding model and the vectorstore
28
  embedding_model = SentenceTransformerEmbeddings(model_name='thenlper/gte-large')
 
118
  # Call the chat model with the message
119
  response = llm(prompt)
120
 
 
 
 
 
 
 
 
121
  llm_response = response.content.strip()
122
 
123
  except Exception as e:
 
127
  print(llm_response)
128
 
129
  # While the prediction is made, log both the inputs and outputs to a local log file
130
+ # While writing to the log file, ensure that the commit scheduler is locked to avoid parallel access
 
 
131
  with scheduler.lock:
132
  with log_file.open("a") as f:
133
  f.write(json.dumps(
 
147
 
148
  # Create Gradio interface
149
  # For the inputs parameter of Interface provide [textbox,company] with outputs parameter of Interface provide prediction
150
+ demo = gr.Interface(fn=llm_query, inputs=[textbox, company], outputs="text", title="FY23 Financial Analyst Assistant", description="Ask questions about the financial performance of AWS, Google, IBM, Meta, and Microsoft based on their 10-K reports.\n\nPlease enter a question below.", theme=gr.themes.Soft())
151
 
152
  demo.queue()
153
+ demo.launch()