Lavinia commited on
Commit
eaf1410
·
1 Parent(s): c81afc7

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +55 -0
app.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pathlib import Path
2
+
3
+ import torch
4
+ import gradio as gr
5
+ from torch import nn
6
+ from PIL import Image
7
+ import numpy as np
8
+
9
+ LABELS = Path('class_names.txt').read_text().splitlines()
10
+
11
+ model = nn.Sequential(
12
+ nn.Conv2d(1, 32, 3, padding='same'),
13
+ nn.ReLU(),
14
+ nn.MaxPool2d(2),
15
+ nn.Conv2d(32, 64, 3, padding='same'),
16
+ nn.ReLU(),
17
+ nn.MaxPool2d(2),
18
+ nn.Conv2d(64, 128, 3, padding='same'),
19
+ nn.ReLU(),
20
+ nn.MaxPool2d(2),
21
+ nn.Flatten(),
22
+ nn.Linear(1152, 256),
23
+ nn.ReLU(),
24
+ nn.Linear(256, len(LABELS)),
25
+ )
26
+ state_dict = torch.load('pytorch_model.bin', map_location='cpu')
27
+ model.load_state_dict(state_dict, strict=False)
28
+ model.eval()
29
+
30
+ def predict(im_dict):
31
+ im_raw = im_dict['composite'][:,:,3]
32
+ img = Image.fromarray(im_raw)
33
+ img_small = img.resize([24,28],resample=0)
34
+ im = np.array(np.uint8(img_small))
35
+ im = np.transpose(im,(1,0))
36
+ x = torch.tensor(im, dtype=torch.float32).unsqueeze(0).unsqueeze(0) / 255.
37
+
38
+ with torch.no_grad():
39
+ out = model(x)
40
+
41
+ probabilities = torch.nn.functional.softmax(out[0], dim=0)
42
+
43
+ values, indices = torch.topk(probabilities, 5)
44
+
45
+ return {LABELS[i]: v.item() for i, v in zip(indices, values)}
46
+
47
+ interface = gr.Interface(
48
+ predict,
49
+ inputs="sketchpad",
50
+ outputs='label',
51
+ title="Sketch Recognition",
52
+ description="Who wants to play Pictionary? Draw a common object like a shovel or a laptop, and the algorithm will guess in real time!",
53
+ article = "<p style='text-align: center'>Sketch Recognition | Demo Model</p>",
54
+ live=True)
55
+ interface.launch(debug=True)