action_video / app.py
engajify's picture
Upload 4 files
83c4da6 verified
import gradio as gr
import torch
import numpy as np
from transformers import AutoProcessor, AutoModel
from PIL import Image
import cv2
from pathlib import Path
from tempfile import NamedTemporaryFile
MODEL_NAME = "microsoft/xclip-base-patch16-zero-shot"
CLIP_LEN = 32
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
processor = AutoProcessor.from_pretrained(MODEL_NAME)
model = AutoModel.from_pretrained(MODEL_NAME).to(device)
def get_video_length(file_path):
cap = cv2.VideoCapture(file_path)
length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
cap.release()
return length
def read_video_opencv(file_path, indices):
frames = []
failed_indices = []
cap = cv2.VideoCapture(file_path)
if not cap.isOpened():
print(f"Error opening video file: {file_path}")
return frames
max_index = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) - 1
for idx in indices:
if idx <= max_index:
frame = get_frame_with_opened_cap(cap, idx)
if frame is not None:
frames.append(frame)
else:
failed_indices.append(idx)
else:
failed_indices.append(idx)
cap.release()
if failed_indices:
print(f"Failed to extract frames at indices: {failed_indices}")
return frames
def get_frame_with_opened_cap(cap, index):
cap.set(cv2.CAP_PROP_POS_FRAMES, index)
ret, frame = cap.read()
if ret:
return cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
return None
def sample_uniform_frame_indices(clip_len, seg_len):
if seg_len < clip_len:
repeat_factor = np.ceil(clip_len / seg_len).astype(int)
indices = np.arange(seg_len).tolist() * repeat_factor
indices = indices[:clip_len]
else:
spacing = seg_len // clip_len
indices = [i * spacing for i in range(clip_len)]
return np.array(indices).astype(np.int64)
def concatenate_frames(frames, clip_len):
layout = { 32: (4, 8) }
rows, cols = layout[clip_len]
combined_image = Image.new('RGB', (frames[0].shape[1]*cols, frames[0].shape[0]*rows))
frame_iter = iter(frames)
y_offset = 0
for i in range(rows):
x_offset = 0
for j in range(cols):
img = Image.fromarray(next(frame_iter))
combined_image.paste(img, (x_offset, y_offset))
x_offset += frames[0].shape[1]
y_offset += frames[0].shape[0]
return combined_image
def model_interface(uploaded_video, activity):
video_length = get_video_length(uploaded_video)
indices = sample_uniform_frame_indices(CLIP_LEN, seg_len=video_length)
video = read_video_opencv(uploaded_video, indices)
concatenated_image = concatenate_frames(video, CLIP_LEN)
activities_list = [activity, "other"]
inputs = processor(
text=activities_list,
videos=list(video),
return_tensors="pt",
padding=True,
)
for key, value in inputs.items():
if isinstance(value, torch.Tensor):
inputs[key] = value.to(device)
with torch.no_grad():
outputs = model(**inputs)
logits_per_video = outputs.logits_per_video
probs = logits_per_video.softmax(dim=1)
results_probs = []
results_logits = []
max_prob_index = torch.argmax(probs[0]).item()
for i in range(len(activities_list)):
current_activity = activities_list[i]
prob = float(probs[0][i].cpu())
logit = float(logits_per_video[0][i].cpu())
results_probs.append((current_activity, f"Probability: {prob * 100:.2f}%"))
results_logits.append((current_activity, f"Raw Score: {logit:.2f}"))
likely_label = activities_list[max_prob_index]
likely_probability = float(probs[0][max_prob_index].cpu()) * 100
return concatenated_image, results_probs, results_logits, [likely_label, likely_probability]
iface = gr.Interface(
fn=model_interface,
inputs=[
gr.Video(label="Upload a Video"),
gr.Textbox(label="Activity to Detect")
],
outputs=[
gr.Image(label="Concatenated Frames"),
gr.Dataframe(headers=["Activity", "Probability"], label="Probabilities"),
gr.Dataframe(headers=["Activity", "Raw Score"], label="Raw Scores"),
gr.Textbox(label="Most Likely Activity")
],
title="Video Activity Classifier",
description="""
**Instructions:**
1. **Upload a Video**: Select a video file to upload.
2. **Enter Activity Label**: Specify the activity you want to detect in the video.
3. **View Results**:
- The concatenated frames from the video will be displayed.
- Probabilities and raw scores for the specified activity and the "other" category will be shown.
- The most likely activity detected in the video will be displayed.
"""
)
if __name__ == "__main__":
iface.launch()