Spaces:
Runtime error
Runtime error
File size: 22,652 Bytes
68fec63 50cb70b 68fec63 50cb70b 68fec63 bae4168 68fec63 bae4168 68fec63 bae4168 68fec63 bae4168 68fec63 bae4168 68fec63 bae4168 1c2e20b 68fec63 bae4168 68fec63 a4292d5 68fec63 50cb70b 68fec63 bae4168 68fec63 bae4168 68fec63 bae4168 68fec63 1c2e20b 68fec63 1c2e20b 68fec63 bae4168 68fec63 bae4168 f0fee2a bae4168 68fec63 bae4168 f0fee2a bae4168 f0fee2a bae4168 68fec63 f0fee2a 68fec63 bae4168 68fec63 bae4168 68fec63 bae4168 68fec63 4547bf4 68fec63 4547bf4 68fec63 bae4168 68fec63 874e98e bae4168 68fec63 874e98e 68fec63 874e98e 68fec63 50cb70b 153b6a9 50cb70b 153b6a9 1708735 50cb70b a4292d5 50cb70b a4292d5 50cb70b 1c2e20b 50cb70b c3b1983 50cb70b a4292d5 50cb70b 68fec63 1c2e20b 68fec63 1c2e20b 68fec63 a4292d5 68fec63 1c2e20b 68fec63 bae4168 1c2e20b bae4168 68fec63 1c2e20b 68fec63 38542cb 68fec63 4547bf4 38542cb 4547bf4 68fec63 874e98e 38542cb 4547bf4 68fec63 50cb70b a4292d5 1c2e20b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 |
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import torch
from matplotlib.ticker import MaxNLocator
from transformers import AutoModelForTokenClassification, AutoTokenizer
from transformers import pipeline
# DATASETS
REDDIT = 'reddit_finetuned'
WIKIBIO = 'wikibio_finetuned'
BASE = 'BERT_base'
# Play with me, consts
SUBREDDIT_CONDITIONING_VARIABLES = ["none", "subreddit"]
WIKIBIO_CONDITIONING_VARIABLES = ['none', 'birth_date']
BERT_LIKE_MODELS = ["bert", "distilbert"]
MAX_TOKEN_LENGTH = 32
# Internal markers for rendering
BASELINE_MARKER = 'baseline'
REDDIT_BASELINE_TEXT = ' '
WIKIBIO_BASELINE_TEXT = 'date'
## Internal constants from training
GENDER_OPTIONS = ['female', 'male']
DECIMAL_PLACES = 1
MULTITOKEN_WOMAN_WORD = 'policewoman'
MULTITOKEN_MAN_WORD = 'spiderman'
# Picked ints that will pop out visually during debug
NON_GENDERED_TOKEN_ID = 30
LABEL_DICT = {GENDER_OPTIONS[0]: 9, GENDER_OPTIONS[1]: -9}
CLASSES = list(LABEL_DICT.keys())
NON_LOSS_TOKEN_ID = -100
EPS = 1e-5 # to avoid /0 errors
# Wikibio conts
START_YEAR = 1800
STOP_YEAR = 1999
SPLIT_KEY = "DATE"
# Reddit consts
# List of randomly selected (tending towards those with seemingly more gender-neutral words)
# in order of increasing self-identified female participation.
# See http://bburky.com/subredditgenderratios/ , Minimum subreddit size: 400000
SUBREDDITS = [
"GlobalOffensive",
"pcmasterrace",
"nfl",
"sports",
"The_Donald",
"leagueoflegends",
"Overwatch",
"gonewild",
"Futurology",
"space",
"technology",
"gaming",
"Jokes",
"dataisbeautiful",
"woahdude",
"askscience",
"wow",
"anime",
"BlackPeopleTwitter",
"politics",
"pokemon",
"worldnews",
"reddit.com",
"interestingasfuck",
"videos",
"nottheonion",
"television",
"science",
"atheism",
"movies",
"gifs",
"Music",
"trees",
"EarthPorn",
"GetMotivated",
"pokemongo",
"news",
# removing below subreddit as most of the tokens are taken up it:
# ['ff', '##ff', '##ff', '##fu', '##u', '##u', '##u', '##u', '##u', '##u', '##u', '##u', '##u', '##u', '##u', ...]
#"fffffffuuuuuuuuuuuu",
"Fitness",
"Showerthoughts",
"OldSchoolCool",
"explainlikeimfive",
"todayilearned",
"gameofthrones",
"AdviceAnimals",
"DIY",
"WTF",
"IAmA",
"cringepics",
"tifu",
"mildlyinteresting",
"funny",
"pics",
"LifeProTips",
"creepy",
"personalfinance",
"food",
"AskReddit",
"books",
"aww",
"sex",
"relationships",
]
# Fire up the models
models_paths = dict()
models = dict()
base_path = "emilylearning/"
# reddit finetuned models:
for var in SUBREDDIT_CONDITIONING_VARIABLES:
models_paths[(REDDIT, var)] = base_path + f'cond_ft_{var}_on_reddit__prcnt_100__test_run_False'
models[(REDDIT, var)] = AutoModelForTokenClassification.from_pretrained(
models_paths[(REDDIT, var)]
)
# wikibio finetuned models:
for var in WIKIBIO_CONDITIONING_VARIABLES:
models_paths[(WIKIBIO, var)] = base_path + f"cond_ft_{var}_on_wiki_bio__prcnt_100__test_run_False"
models[(WIKIBIO, var)] = AutoModelForTokenClassification.from_pretrained(
models_paths[(WIKIBIO, var)]
)
# BERT-like models:
for bert_like in BERT_LIKE_MODELS:
models_paths[(BASE, bert_like)] = f"{bert_like}-base-uncased"
models[(BASE, bert_like)] = pipeline(
"fill-mask", model=models_paths[(BASE, bert_like)])
# Tokenizers same for each model, so just grabbing one of them
tokenizer = AutoTokenizer.from_pretrained(
models_paths[(BASE, BERT_LIKE_MODELS[0])], add_prefix_space=True
)
MASK_TOKEN_ID = tokenizer.mask_token_id
def get_gendered_token_ids(tokenizer):
## Set up gendered token constants
gendered_lists = [
['he', 'she'],
['him', 'her'],
['his', 'hers'],
["himself", "herself"],
['male', 'female'],
['man', 'woman'],
['men', 'women'],
["husband", "wife"],
['father', 'mother'],
['boyfriend', 'girlfriend'],
['brother', 'sister'],
["actor", "actress"],
]
# Generating dicts here for potential later token reconstruction of predictions
male_gendered_dict = {list[0]: list for list in gendered_lists}
female_gendered_dict = {list[1]: list for list in gendered_lists}
male_gendered_token_ids = tokenizer.convert_tokens_to_ids(
list(male_gendered_dict.keys()))
female_gendered_token_ids = tokenizer.convert_tokens_to_ids(
list(female_gendered_dict.keys())
)
# Below technique is used to grab second token in a multi-token word
# There must be a better way...
multiword_woman_token_ids = tokenizer.encode(
MULTITOKEN_WOMAN_WORD, add_special_tokens=False)
assert len(multiword_woman_token_ids) == 2
subword_woman_token_id = multiword_woman_token_ids[1]
multiword_man_token_ids = tokenizer.encode(
MULTITOKEN_MAN_WORD, add_special_tokens=False)
assert len(multiword_man_token_ids) == 2
subword_man_token_id = multiword_man_token_ids[1]
male_gendered_token_ids.append(subword_man_token_id)
female_gendered_token_ids.append(subword_woman_token_id)
# Confirming all tokens are in vocab
assert tokenizer.unk_token_id not in male_gendered_token_ids
assert tokenizer.unk_token_id not in female_gendered_token_ids
return male_gendered_token_ids, female_gendered_token_ids
def tokenize_and_append_metadata(text, tokenizer, female_gendered_token_ids, male_gendered_token_ids):
"""Tokenize text and mask/flag 'gendered_tokens_ids' in token_ids and labels."""
label_list = list(LABEL_DICT.values())
assert label_list[0] == LABEL_DICT["female"], "LABEL_DICT not an ordered dict"
label2id = {label: idx for idx, label in enumerate(label_list)}
tokenized = tokenizer(
text,
truncation=True,
padding='max_length',
max_length=MAX_TOKEN_LENGTH,
)
# Finding the gender pronouns in the tokens
token_ids = tokenized["input_ids"]
female_tags = torch.tensor(
[
LABEL_DICT["female"]
if id in female_gendered_token_ids
else NON_GENDERED_TOKEN_ID
for id in token_ids
]
)
male_tags = torch.tensor(
[
LABEL_DICT["male"]
if id in male_gendered_token_ids
else NON_GENDERED_TOKEN_ID
for id in token_ids
]
)
# Labeling and masking out occurrences of gendered pronouns
labels = torch.tensor([NON_LOSS_TOKEN_ID] * len(token_ids))
labels = torch.where(
female_tags == LABEL_DICT["female"],
label2id[LABEL_DICT["female"]],
NON_LOSS_TOKEN_ID,
)
labels = torch.where(
male_tags == LABEL_DICT["male"], label2id[LABEL_DICT["male"]], labels
)
masked_token_ids = torch.where(
female_tags == LABEL_DICT["female"], MASK_TOKEN_ID, torch.tensor(
token_ids)
)
masked_token_ids = torch.where(
male_tags == LABEL_DICT["male"], MASK_TOKEN_ID, masked_token_ids
)
tokenized["input_ids"] = masked_token_ids
tokenized["labels"] = labels
return tokenized
def get_tokenized_text_with_metadata(input_text, indie_vars, dataset, male_gendered_token_ids, female_gendered_token_ids):
"""Construct dict of tokenized texts with each year injected into the text."""
if dataset == WIKIBIO:
text_portions = input_text.split(SPLIT_KEY)
# If no SPLIT_KEY found in text, add space for metadata and whitespaces
if len(text_portions) == 1:
text_portions = ['Born in ', f" {text_portions[0]}"]
tokenized_w_metadata = {'ids': [], 'atten_mask': [], 'toks': [], 'labels': []}
for indie_var in indie_vars:
if dataset == WIKIBIO:
if indie_var == BASELINE_MARKER:
indie_var = WIKIBIO_BASELINE_TEXT
target_text = f"{indie_var}".join(text_portions)
else:
if indie_var == BASELINE_MARKER:
indie_var = REDDIT_BASELINE_TEXT
target_text = f"r/{indie_var}: {input_text}"
tokenized_sample = tokenize_and_append_metadata(
target_text,
tokenizer,
male_gendered_token_ids,
female_gendered_token_ids
)
tokenized_w_metadata['ids'].append(tokenized_sample["input_ids"])
tokenized_w_metadata['atten_mask'].append(
torch.tensor(tokenized_sample["attention_mask"]))
tokenized_w_metadata['toks'].append(
tokenizer.convert_ids_to_tokens(tokenized_sample["input_ids"]))
tokenized_w_metadata['labels'].append(tokenized_sample["labels"])
return tokenized_w_metadata
def get_avg_prob_from_finetuned_outputs(outputs, is_masked, num_preds, gender):
preds = torch.softmax(outputs[0][0].cpu(), dim=1, dtype=torch.double)
pronoun_preds = torch.where(is_masked, preds[:,CLASSES.index(gender)], 0.0)
return round(torch.sum(pronoun_preds).item() / (EPS + num_preds) * 100, DECIMAL_PLACES)
def get_avg_prob_from_pipeline_outputs(mask_filled_text, gendered_token_ids, num_preds):
pronoun_preds = [sum([
pronoun["score"] if pronoun["token"] in gendered_token_ids else 0.0
for pronoun in top_preds])
for top_preds in mask_filled_text
]
return round(sum(pronoun_preds) / (EPS + num_preds) * 100, DECIMAL_PLACES)
def get_figure(results, dataset, gender, indie_var_name, include_baseline=True):
colors = ['b', 'g', 'c', 'm', 'y', 'r', 'k'] # assert no
# Grab then remove baselines from df
results_to_plot = results.drop(index=BASELINE_MARKER, axis=1)
fig, ax = plt.subplots()
for i, col in enumerate(results.columns):
ax.plot(results_to_plot[col], color=colors[i])#, color=colors)
if include_baseline == True:
baseline = results.loc[BASELINE_MARKER]
for i, (name, value) in enumerate(baseline.items()):
if name == indie_var_name:
continue
ax.axhline(value, ls='--', color=colors[i])
if dataset == REDDIT:
ax.set_xlabel("Subreddit prepended to input text")
ax.xaxis.set_major_locator(MaxNLocator(6))
else:
ax.set_xlabel("Date injected into input text")
ax.set_title(f"Softmax probability of pronouns predicted {gender}\n by model type vs {indie_var_name}.")
ax.set_ylabel(f"Avg softmax prob for {gender} pronouns")
ax.legend(list(results_to_plot.columns))
return fig
def predict_gender_pronouns(
dataset,
bert_like_models,
normalizing,
include_baseline,
input_text,
):
"""Run inference on input_text for each model type, returning df and plots of precentage
of gender pronouns predicted as female and male in each target text.
"""
male_gendered_token_ids, female_gendered_token_ids = get_gendered_token_ids(tokenizer)
if dataset == REDDIT:
indie_vars = [BASELINE_MARKER] + SUBREDDITS
conditioning_variables = SUBREDDIT_CONDITIONING_VARIABLES
indie_var_name = 'subreddit'
else:
indie_vars = [BASELINE_MARKER] + np.linspace(START_YEAR, STOP_YEAR, 20).astype(int).tolist()
conditioning_variables = WIKIBIO_CONDITIONING_VARIABLES
indie_var_name = 'date'
tokenized = get_tokenized_text_with_metadata(
input_text,
indie_vars,
dataset,
male_gendered_token_ids,
female_gendered_token_ids
)
initial_is_masked = tokenized['ids'][0] == MASK_TOKEN_ID
num_preds = torch.sum(initial_is_masked).item()
female_dfs = []
male_dfs = []
female_dfs.append(pd.DataFrame({indie_var_name: indie_vars}))
male_dfs.append(pd.DataFrame({indie_var_name: indie_vars}))
for var in conditioning_variables:
prefix = f"{var}_metadata"
model = models[(dataset, var)]
female_pronoun_preds = []
male_pronoun_preds = []
for indie_var_idx in range(len(tokenized['ids'])):
if dataset == WIKIBIO:
is_masked = initial_is_masked # injected text all same token length
else:
is_masked = tokenized['ids'][indie_var_idx] == MASK_TOKEN_ID
ids = tokenized["ids"][indie_var_idx]
atten_mask = tokenized["atten_mask"][indie_var_idx]
labels = tokenized["labels"][indie_var_idx]
with torch.no_grad():
outputs = model(ids.unsqueeze(dim=0),
atten_mask.unsqueeze(dim=0))
female_pronoun_preds.append(
get_avg_prob_from_finetuned_outputs(outputs,is_masked, num_preds, "female")
)
male_pronoun_preds.append(
get_avg_prob_from_finetuned_outputs(outputs,is_masked, num_preds, "male")
)
female_dfs.append(pd.DataFrame({prefix : female_pronoun_preds}))
male_dfs.append(pd.DataFrame({prefix : male_pronoun_preds}))
for bert_like in bert_like_models:
prefix = f"base_{bert_like}"
model = models[(BASE, bert_like)]
female_pronoun_preds = []
male_pronoun_preds = []
for indie_var_idx in range(len(tokenized['ids'])):
toks = tokenized["toks"][indie_var_idx]
target_text_for_bert = ' '.join(
toks[1:-1]) # Removing [CLS] and [SEP]
mask_filled_text = model(target_text_for_bert)
# Quick hack as realized return type based on how many MASKs in text.
if type(mask_filled_text[0]) is not list:
mask_filled_text = [mask_filled_text]
female_pronoun_preds.append(get_avg_prob_from_pipeline_outputs(
mask_filled_text,
female_gendered_token_ids,
num_preds
))
male_pronoun_preds.append(get_avg_prob_from_pipeline_outputs(
mask_filled_text,
male_gendered_token_ids,
num_preds
))
if normalizing:
total_gendered_probs = np.add(female_pronoun_preds, male_pronoun_preds)
female_pronoun_preds = np.around(
np.divide(female_pronoun_preds, total_gendered_probs)*100,
decimals=DECIMAL_PLACES
)
male_pronoun_preds = np.around(
np.divide(male_pronoun_preds, total_gendered_probs)*100,
decimals=DECIMAL_PLACES
)
female_dfs.append(pd.DataFrame({prefix : female_pronoun_preds}))
male_dfs.append(pd.DataFrame({prefix : male_pronoun_preds}))
# Pick a sample to display to user as an example
toks = tokenized["toks"][3]
target_text_w_masks = ' '.join(toks[1:-1]) # Removing [CLS] and [SEP]
# Plots / dataframe for display to users
female_results = pd.concat(female_dfs, axis=1).set_index(indie_var_name)
male_results = pd.concat(male_dfs, axis=1).set_index(indie_var_name)
female_fig = get_figure(female_results, dataset, "female", indie_var_name, include_baseline)
female_results.reset_index(inplace=True) # Gradio Dataframe doesn't 'see' index?
male_fig = get_figure(male_results, dataset, "male", indie_var_name, include_baseline)
male_results.reset_index(inplace=True) # Gradio Dataframe doesn't 'see' index?
return (
target_text_w_masks,
female_fig,
female_results,
male_fig,
male_results,
)
title = "Causing Gender Pronouns"
description = """
## Intro
This work investigates how we can cause LLMs to change their gender pronoun predictions.
We do this by first considering plausible data generating processes for the type of datasets upon which the LLMs were pretrained. The data generating process is usually not revealed by the dataset alone, and instead requires (ideally well-informed) assumptions about what may have caused both the features and the labels to appear in the dataset.
An example of an assumed data generating process for the [wiki-bio dataset](https://huggingface.co/datasets/wiki_bio) is shown in the form of a causal DAG in [causing_gender_pronouns](https://huggingface.co/spaces/emilylearning/causing_gender_pronouns), an earlier but better documented version of this Space.
Once we have a causal DAG, we can identify likely confounding variables that have causal influences on both the features and the labels in a model. We can include those variables in our model train-time and/or at inference-time to produce spurious correlations, exposing potentially surprising learned relationships between the features and labels.
## This demo
Here we can experiment with these spurious correlations in both BERT and BERT-like pre-trained models as well as two types of fine-tuned models. These fine-tuned models were trained with a specific gender-pronoun-predicting task, and with potentially confounding metadata either excluded (`none_metadata` variants) or included (`birth_date_metadata` and `subreddit_metadata` variants) in the text samples at train time.
See [source code](https://github.com/2dot71mily/causing_gendering_pronouns_two) for more details.
For the gender-pronoun-predicting task, the following non-gender-neutral terms are `[MASKED]` for gender-prediction.
```
gendered_lists = [
['he', 'she'],
['him', 'her'],
['his', 'hers'],
["himself", "herself"],
['male', 'female'],
['man', 'woman'],
['men', 'women'],
["husband", "wife"],
['father', 'mother'],
['boyfriend', 'girlfriend'],
['brother', 'sister'],
["actor", "actress"],
["##man", "##woman"]]
```
What we are looking for in this demo is a dose-response relationship, where a larger intervention in the treatment (the text injected in the inference sample, displayed on the x-axis) produces a larger response in the output (the average softmax probability of a gendered pronoun, displayed on the y-axis).
For the `wiki-bio` models the x-axis is simply the `date`, ranging from 1800 - 1999, which is injected into the text. For the `reddit` models, it is the `subreddit` name, which is prepended to the inference text samples, with subreddits that have a larger percentage of self-reported female commentors increasing to the right (following the methodology in http://bburky.com/subredditgenderratios/, we just copied over the entire list of subreddits that had a Minimum subreddit size of 400,000).
## What you can do:
- Pick a fine-tuned model type.
- Pick optional BERT, and/or BERT-like model.
- Decide if you want to see BERT-like model’s predictions normalized to only those predictions that are gendered (ignoring their gender-neutral predictions).
- Note, DistilBERT in particular does a great job at predicting gender-neutral terms, so this normalization can look pretty noisy.
- This normalization is not required for our fine-tuned models, which are forced to make a binary prediction.
- Decide if you want to see the baseline prediction (from neutral or no text injection into your text sample) in the plot.
- Come up with a text sample!
- Any term included that is from the `gendered_lists` above will be masked out for prediction.
- In the case of `wiki-bio`, any appearance of the word `DATE` will be replaced with the year shown on the x-axis. (If no `DATE` is included, the phrase `Born in DATE…` will be prepended to your text sample.)
- In the case of `reddit`, the `subreddit` names shown on the x-axis (or shown more clearly in the associated dataframe) will be prepended to your text sample).
- Don’t forget to hit the [Submit] button!
- Using the provided examples at the bottom may result in a pre-cached dataframe being loaded, but the plot will only be calculated after you hit [Submit].
Note: if app seems frozen, refreshing webpage may help. Sorry for the inconvenience. Will debug soon.
"""
article = "The source code to generate the fine-tuned models can be found/reproduced here: https://github.com/2dot71mily/causing_gendering_pronouns_two"
ceo_example = [
REDDIT,
[BERT_LIKE_MODELS[0]],
"True",
"True",
"She is the founder and CEO. She has led company growth from fledging start up to unicorn.",
]
building_example = [
WIKIBIO,
[BERT_LIKE_MODELS[0]],
"True",
"True",
"She always walked past the building built in DATE on her way to her job as an elementary school teacher.",
]
death_date_example = [
WIKIBIO,
BERT_LIKE_MODELS,
"False",
"True",
'Died in DATE, she was recognized for her great accomplishments to the field of computer science.'
]
neg_reddit_example = [
REDDIT,
[BERT_LIKE_MODELS[0]],
"False",
"True",
'She is not good at anything. The work she does is always subpar.'
]
gr.Interface(
fn=predict_gender_pronouns,
inputs=[
gr.Radio(
[REDDIT, WIKIBIO],
type="value",
label="Pick 'conditionally' fine-tuned model.",
),
gr.CheckboxGroup(
BERT_LIKE_MODELS,
type="value",
label="Optional BERT base uncased model(s).",
),
gr.Dropdown(
["False", "True"],
label="Normalize BERT-like model's predictions to gendered-only?",
type="index",
),
gr.Dropdown(
["False", "True"],
label="Include baseline predictions (dashed-lines)?",
type="index",
),
gr.Textbox(
lines=5,
label="Input Text: Sentence about a single person using some gendered pronouns to refer to them.",
),
],
outputs=[
gr.Textbox(
type="auto", label="Sample target text fed to model"),
gr.Plot(type="auto", label="Plot of softmax probability pronouns predicted female."),
gr.Dataframe(
show_label=True,
overflow_row_behaviour="show_ends",
label="Table of softmax probability pronouns predicted female",
),
gr.Plot(type="auto", label="Plot of softmax probability pronouns predicted male."),
gr.Dataframe(
show_label=True,
overflow_row_behaviour="show_ends",
label="Table of softmax probability pronouns predicted male",
),
],
title=title,
description=description,
article=article,
examples=[ceo_example, building_example, death_date_example, neg_reddit_example]
).launch(debug=True) |